期刊文献+

一种改进的医学图像目标轮廓跟踪算法 被引量:4

An improved algorithm on objects boundary tracking of medical image
下载PDF
导出
摘要 针对常用的医学图像跟踪算法对复杂形状的连通域轮廓往往跟踪失败的问题,提出了一种改进的医学图像目标组织轮廓提取算法。该算法提高了其在8-连通域条件下的稳定性,既能跟踪单连通域的外轮廓,也能跟踪多连通域的内、外轮廓及孤岛的内、外轮廓。 According to the problem that medical image tracking algorithm tracking connected domain contour of complex shapes of- ten failure ,describes an improved algorithm on objects boundary tracking of medical image. This improved algorithm enhances the stability under the condition of the 8-connected domain,it can not only track external contours of simply-connected domain, but also track the internal and external contours of multiple-connected domain and the internal and external contours of the island.
出处 《现代制造工程》 CSCD 北大核心 2012年第10期33-36,共4页 Modern Manufacturing Engineering
基金 山东省中青年科学家奖励基金(BS2009ZZ017)
关键词 轮廓跟踪 单连通域 多连通域 contour tracing simply-connected domain multiple-connected domain
  • 相关文献

参考文献9

二级参考文献36

共引文献53

同被引文献36

  • 1黄恢乐,胡跃明,袁鹏,吴忻生,高红霞.高速高精度全自动贴片机的元件角度识别算法[J].计算机工程与应用,2005,41(22):111-113. 被引量:8
  • 2鲜飞.贴片机视觉对中系统[J].电子与封装,2006,6(7):21-24. 被引量:9
  • 3邵泽明,朱剑英,王化明.基于SUSAN算法的分层快速角点检测[J].华南理工大学学报(自然科学版),2006,34(7):65-68. 被引量:13
  • 4LOWED G. Object recognition from local scale invariant features. Proceeding of the Seventh International Conference on Computer Vision[ C ]. Washington, USA, 1999.
  • 5David G Lowe. Distinctive Image Features from Scale - In- variant Key points [ J ]. International Journal of Computer Vision,2004,60(2) :91 - 110.
  • 6Joshi A S, James M R, Samples M E. Tracking on-road vehicles with sensors of different modalities: U. S. A, US20140032012 A1 I P/OL ]. ( 2014-01-30 ) [2014-03-27 ]. http://appftl, uspto, gov/netacgi/nph-Parser? Sectl = PTOI&Sect2 = HITOFFSa:I = PG018p = 18aa =/netahtml/PTO/srctmum. html&r = l&f = G&I = 50&sl =20140032012. PGNR.
  • 7Yilmaz A, Javed O, Shah M. Object tracking: A survey[J]. ACM Computing Surveys, 2006, 38(4) :13.
  • 8Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[ J ]. International Journal of Computer Vi- sion, 2008, 77(1-3):125-141.
  • 9Jepson A D, Fleet D J, E1-Maraghi T F. Robust online appearance models for visual tracking[J]. Pattern Analysis and Ma- chine Intelligence, 2003, 25 (10) : 1296-1311.
  • 10He R, Hu B G, Zheng W S, et al. Two-stage sparse representation for robust recognition on large-scale database [ C ]//The Association for the Advancement of Artificial Intelligence Conference, Atlanta, USA:AAIC, 2010:1-10.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部