期刊文献+

免疫协同微粒群进化算法的永磁同步电机多参数辨识模型方法 被引量:41

Immune Co-evolution Particle Swarm Optimization for Permanent Magnet Synchronous Motor Parameter Identification
下载PDF
导出
摘要 针对永磁同步电机多参数辨识问题,提出一种基于免疫协同微粒群进化(Immune co-evolution particle swarm optimization,ICPSO)算法的永磁同步电机(Permanent magnet synchronous motor,PMSM)多参数辨识方法.算法由记忆种群与若干个普通种群构成,在进化过程中普通种群中优秀个体进入记忆库种群.普通种群内部通过精英粒子保留、免疫网络以及柯西变异等混合策略共同产生新个体,个体极值采用小波学习加快收敛速度,免疫克隆选择算法对记忆库进行精细搜索,迁移机制实现了整个种群的信息共享与协同进化.永磁同步电机参数辨识结果表明该方法不需要知道电机设计参数先验知识,能够有效地辨识电机电阻、dq轴电感与转子磁链,且能有效追踪该参数变化值. Aiming at the problem of permanent magnet synchronous motor (PMSM) multiple parameter identification, a novel parameter identification approach to PMSM based on immune co-evolution particle swarm optimization (ICPSO) algorithm is proposed. The proposed ICPSO consists of one memory subpopulation and several normal subpopulations. In each generation of the algorithm, the best individual of each normal subpopulation will be memorized into the memory population. A hybrid method, such as elitist reservation, immune network, cauchy mutation, etc., which creates new individuals by using three different operators, is proposed to ensure the diversity of all the normal subpopulations. Furthermore, a simple wavelet learning operator is employed for accelerating the convergence speed of pbest. The immune clonal selection operator is employed for optimizing the memory population while the migration scheme is employed for the information exchange between memory and normal subpopulations. Its performance is further verified by its application in multi-parameter estimation of permanent magnet synchronous machines, which shows that its performance is much better than other PSOs in simultaneously estimating the machine dq-axis inductances, stator winding resistance, and rotor flux linkage. In addition, it can also effectively track the varied parameter.
出处 《自动化学报》 EI CSCD 北大核心 2012年第10期1698-1708,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61174140) 教育部高校博士点基金(20110161110035)资助~~
关键词 人工免疫系统 粒子群优化 协同进化 永磁同步电机 参数辨识 Aartificial immune system (AIS), particle swarm optimization (PSO), co-evolutionary, permanent magnetsynchronous motors (PMSM), parameter identification
  • 相关文献

参考文献23

  • 1Ooshima M, Chiba A, Rahman A, Fukao T. An improved control method of buried-type IPM bearingless motors con- sidering magnetic saturation and magnetic pull variation. IEEE Transactions on Energy Conversion, 2004, 19(3): 569-575.
  • 2Rahman M A, Vilathgamuwa D M, Uddinand M N, King- Jet T. Nonlinear control of interior permanent magnet syn- chronous motor. IEEE Transactions on Industry Applica- tions, 2003, 39(2): 408-416.
  • 3Ramakrishnan R, Islam R, Islam M, Sebastian T. Real time estimation of parameters for controlling and monitoring per- manent magnet synchronous motors. In: Proceedings of the 2009 IEEE International Electric Machines and Drives Con- ference. Miami, USA: IEEE, 2009. 1194-1199.
  • 4Bolognani S, Tubiana L, Zigliotto M. Extended Kalman fil- ter tuning in sensorless PMSM drives. IEEE Transactions on Industry Applications, 2003, 39(6): 1741-1747.
  • 5Liu T, Elbuluk M, Husain I. Sensorless adaptive neural network control of permanent magnet synchronous motors. In: Proceedings of International Conference on Electric Ma- chines and Drives. Seattle, WA, USA: IEEE, 1999. 287-289.
  • 6Liu K, Zhang Q, Chen J T, Zhu Z Q, Zhang J. Online mul- tiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking. IEEE Trans- actions on Industria/Electronics, 2011, 58(5): 1776-1788.
  • 7Rashed M, Macconnell P F A, Stronach A F, Acarnley P. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator- resistance estimation. IEEE Transactions on Industrial Elec- tronics, 2007, 54(3): 1664-1675.
  • 8Liu K, Zhang Q, Zhu Z Q, Zhang J, Shen A W, Stewart P Comparison of two novel MRAS based strategies for identi- fying parameters in permanent magnet synchronous motors International Journal of Automation and Computing, 2010 7(4): 516-524.
  • 9Rahman K M, Hiti S. Identification of machine parameters of a synchronous motor. IEEE Transactions on Industry Ap- plications, 2005, 41(2): 557-565.
  • 10吴茂林,黄声华.永磁同步电机非线性参数辨识[J].电工技术学报,2009,24(8):65-68. 被引量:24

二级参考文献34

  • 1揭贵生,马伟明.考虑转子磁通谐波的永磁同步电机控制性能分析[J].铁道科学与工程学报,2005,2(6):92-97. 被引量:9
  • 2Moreau S, Kahoul R, Louits J. Parameters estimation of permanent magnet synchronous machine without adding extra-signal as input excitation[J]. IEEE Trans on Industry Applications, 2004, 36(4): 371-376.
  • 3Khwaja M, Silva H. Identification of machine parameters of a synchronous motor[J]. IEEE Trans. on Industry Applications, 2005, 41(2): 557-565.
  • 4Babak N, Farid M, Francois M. Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities[J]. IEEE Trans. on Industry Applications, 2007, 43(2): 485-494.
  • 5Stumberger B, Stumberger G, Hamler A. Evaluation of saturation and cross-magnetization interior permanent-magnet synchronous effects in motor[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1264-1271.
  • 6Abdelhad B, Kaiyu W, Leon M. Identification of induction machine parameters using a new adaptive genetic algorithm[J]. Electric Power Components and Systems, 2004, 32: 767-784.
  • 7Rahimpour E, Bellini A, Cava L. Parameter identification of deep-bar induction motors using genetic algorithm[J]. Electrical Engineering, 2007, 89: 547-552.
  • 8Dupuis A, Ghribi M, Kaddouri A. Multiobjective genetic estimation of DC motor parameters and load torque[C]. IEEE International Conference on Industrial Technology (ICiT), 2004:1511-1514.
  • 9Lankarany M, Rezazade A.Parameter estimation optimizization based on gentic algorithm[J]. IEEE Trans. on Industry Applications, 2006, 36(6): 365-370.
  • 10焦竹青,屈百达,徐保国.基于遗传算法的永磁同步电机调速系统PID参数优化[J].电机与控制应用,2007,31(7):34-37. 被引量:5

共引文献91

同被引文献297

引证文献41

二级引证文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部