期刊文献+

基于Fisher判别的半监督天体光谱数据特征降维

Semi-supervised Dimension Reduction of Spectral Characteristic Based on Fisher Discriminant Analysis
下载PDF
导出
摘要 降维是天体光谱数据预处理常用的手段之一,如何利用标号天体光谱数据,克服降维过程中的过分拟合,是提高降维效果的有效途径之一。采用半监督学习,给出了一种天体光谱数据特征降维方法。该方法首先针对具有标号天体光谱数据,建立Fisher判别分析和PCA可变动选择的不确定关系;其次构建其半监督降维的全局最优化形式,通过特征值分解计算降维结果,从而有效地克服了天体光谱降维过程中的过分拟合问题;最后采用高红移类星体和晚型星SDSS天体光谱特征线数据集,实验验证了该方法的有效性。 Dimensionality reduction is one of the common methods to preproeess astronomical spectral data. How to use label astronomical spectral data for conquering over-fitting of the dimensionality reduction process is an effective way to improve the effect of dimensionality reduction. In this paper, a dimension reduction method of astronomical spectrum data feature is presented by utilizing semi-supervised learning. Firstly ,for the label Celestial spectral data, an uncertainty relation is established in which Fisher discriminant analysis and PCA can be selected variably. Secondly, the global optimization of semi-supervised dimensionality reduction is built. Dimensionality reduction results are calculated through the eigenvalue decomposition, so that the problem of over-fitting is solved in astronomical spectral data dimensionality reduction. In the end,the experimental results proved the validity of the method by using the hzqso and mstar astronomical spectral features line data sets.
作者 盛英
出处 《太原科技大学学报》 2012年第5期331-336,共6页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金(2010011021)
关键词 半监督降维 PCA 天体光谱数据 FISHER判别分析 semi-supervised dimension reduction, PCA, spectral data, fisher discriminant analysis
  • 相关文献

参考文献14

二级参考文献87

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部