摘要
该文研究特点是;用强大数定律,中心极限定理研究随机系数{a_n}部分和及随机指数λ_n极限性质, 研究结果是;(i)在易满足条件下,(ii)在a_n独立同分布,方差存在条件下;(iii)在{a_n}独立,Ea_n=0,及附加适当条件下,得出收敛横坐标σ_c简洁公式。
Consider the convergence of bi-random Dirchlet series , wherean an(ω)
and λn(ω) are random variables, we study the limit properties of
and
by the
strong law of large numbers and the central limits theorems. Some simple and explict formulae of the absciasssa of convergence c attained under one of following conditions :( i ) 0 <
limlim
; (ii) {an} is a sequence of real or complex independent and
equally distributed random variables with finite variances D(an) ; (iii) {an} is a sequence of independent random with expectation Ean = 0 and other suitable conditions.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1998年第4期419-428,共10页
Acta Mathematica Scientia
关键词
双随机狄里克莱级数
强大数定律
方差
收敛性
Weak Dirichlet series, Bi-random Dirichlet series, The strong law of large numbers, Variance.