期刊文献+

奇异薄层单元及其在双材料界面断裂分析中的应用 被引量:2

SINGULAR THIN-LAYER ELEMENT AND ITS APPLICATION IN BI-MATERIAL INTERFACE FRACTURE ANALYSIS
原文传递
导出
摘要 构造了一种平面应力奇异薄层单元并证明了其具有-1/2阶奇异性。用此单元研究了双材料界面层的刚度对界面裂纹尖端场的影响。研究发现:对于I型界面断裂,减小界面法向刚度对KI、KII的影响远大于减小界面切向刚度,且法向和切向刚度的减小对KII的影响均大于对KI的影响,降低法向刚度会显著改变裂尖正应力和剪应力的分布,而降低切向刚度只明显改变剪应力的分布,对正应力的分布影响不大;对于界面II型断裂,则减小切向刚度对KI、KII的影响远大于减小法向刚度,且切向、法向刚度的减小对KI影响均大于对KII影响,降低切向刚度会显著改变裂尖正应力和剪应力的分布,而降低法向刚度只明显改变裂尖正应力的分布,对剪应力的分布影响不大。随着界面刚度增大,应力强度因子和裂尖应力分布均趋近无厚度理想界面情况。 A stress singular thin-layer element was developed and its-1/2 singularity was proved.Then the element was adopted to study the effects of interface stiffness on the crack tip field of a bi-material interface crack.The results demonstrate that for mode I interface fracture,the decreasing of normal interface stiffness will introduce more significant variations of stress intensity factors KI and KII than the decreasing of shear interface stiffness.It also causes notable changes of both normal and shear stress components at a crack tip.However,decreasing shear stiffness only affects the shear stress component notably.In this fracture model,effects of reducing either normal or shear stiffness on KII are more marked than on KI.On the contrary,for model II interface fracture,shear stiffness becomes the dominator on the two stress intensity factors and both normal and shear stress components vary greatly with its decreasing.Reducing normal interface stiffness just remarkably affects normal stress component other than all the stress components.In this case,KI is more sensitive to the two interface stiffness parameters than KII.For any fracture model,stress intensity factors and stress concentrations at a crack tip approach to those of no thickness perfect interface when interface stiffness of bi-material increase.
作者 沈辉 周储伟
出处 《工程力学》 EI CSCD 北大核心 2012年第10期69-74,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10772078,10472045)
关键词 奇异薄层单元 双材料 界面断裂 应力强度因子 应力集中 singular thin-layer element bi-material interface fracture stress intensity factor stress concentration
  • 相关文献

参考文献16

  • 1Williams M L. The stress around a fault or crack in dissimilar media [J]. Bulletin of Seismological Society of Ameriea, 1959, 49(2): 199--204.
  • 2Erdogan F. Stress distribution in a nonhomogeneous elastic plane with cracks [J]. Journal of Applied Mechanics, ASME, 1965, 32(2): 403--410.
  • 3Rice J R, Sih G C. Plane problems of cracks in dissimilar media [J]. Journal of Applied Mechanics, ASME, 1965, 32(2): 418--423.
  • 4O' Dow N P, Stout M G, Shih C F. Fracture toughness of alumina-niobium interfaces: Experiments and analyses[J]. Philosophical Magazine, 1992, 66(6): 1037-- 1064.
  • 5Nix W D. Mechanical properties of thin films [J]. Metallurgical and Materials Transactions A, 1989, 20: 2217--2245.
  • 6Atkinson C. The interface crack with contact zone [J]. international Journal of Fracture, 1977, 19:131 -- 138.
  • 7Delale F, Erdogan F. On the mechanical modeling of the interfacial region in bonded half-planes [J]. Journal of Applied Mechanics, ASME, 1988, 55:317--324.
  • 8Yang W, Shih C F. Fracture along an interlayer [J]. International Journal of Solids and Structures, 1994, 31 : 985-- 1002.
  • 9杨卫,王惠军.界面层断裂理论[J].机械强度,1995,17(3):83-87. 被引量:4
  • 10Sharma K G, Desai C S. Analysis and implementation of thin-layer element for interfaces and joints [J]. Journal of Engeering Mechanics, ASCE, 1992, 118(12): 2442-- 2462.

二级参考文献28

  • 1陈陆平,潘敬哲,钱令希.复合材料纤维/基体界面失效问题的参变量有限元数值模拟[J].复合材料学报,1993,10(1):71-75. 被引量:17
  • 2叶碧泉,羿旭明,靳胜勇,梁芝茹.用界面单元法分析复合材料界面力学性能[J].应用数学和力学,1996,17(4):343-348. 被引量:17
  • 3张彦,朱平,来新民,梁新华.低速冲击作用下碳纤维复合材料铺层板的损伤分析[J].复合材料学报,2006,23(2):150-157. 被引量:49
  • 4孙均 汪炳铿.地下结构有限元法解析[M].上海:同济大学出版社,1988..
  • 5卓家寿 姜弘道.带有夹层岩基的三维弹塑性分析[J].华东水利学报,1979,(2):1-22.
  • 6RW克拉夫等 王光远等(译).结构动力学[M].科学出版社,1981..
  • 7邵伟.结构-地基相互作用中节理及交界面的静动力模拟,清华大学硕士论文[M].,1998..
  • 8Rikarct B, Larsgunnar N, Kjell S. Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model[J]. Composites Science and Technology, 2004, 64(1) 269-278.
  • 9FanC Y, Jar P Y B, Cheng J J R. Cohesive zone with continuum damage properties for simulation of delamination development in fibre composites and failure of adhesive joints[J]. Engineering Fracture Mechanics, 2008, 75(13): 3866- 3880.
  • 10Parmigiani J P, Thouless M D. The effects of cohesive strength and toughness on mixed-mode delamination of beamlike geometries[J]. Engineering Fracture Mechanics, 2007, 74(17): 2675-2699.

共引文献99

同被引文献26

  • 1李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 2汤丽华,许金泉.粘弹性界面裂纹奇异场[J].力学季刊,2007,28(1):116-123. 被引量:7
  • 3Zak A R,Williams M L.Crack point stress singularities at a bimaterial interface[J].Journal of Applied Mechanics,1963,30(1):142.
  • 4Cook T S,Erdogan F.Stresses in bonded materials with a crack perpendicular to the interface[J].International Journal of Engineering Science,1972,10(8):677―697.
  • 5Chen Daiheng.A crack normal to and terminating at a biomaterial interface[J].Engineering Fracture Mechanics,1994,49(4):517―532.
  • 6Lee J C,Keer L M.Study of a three-dimensional crack terminating at an interface[J].Journal of Applied Mechanics,1986,53(2):311―316.
  • 7Qin T Y,Noda N A.Analysis of a three-dimensional crack terminating at an interface using a hyper-singular integral equation method[J].ASME Journal of Applied Mechanics,2002,69(5):626―631.
  • 8Lin K Y,Mar J W.Finite element analysis of stress intensity factors for cracks at a bi-material interface[J].International Journal of Fracture,1976,12(4):521―531.
  • 9Meguid S A,Tan M,Zhu Z H.Analysis of cracks perpendicular to bimaterial interfaces using a novel finite element[J].International journal of Fracture,1995,73(1):1―23.
  • 10Bouhala L,Shao Q,Koutsawa Y,et al.An XFEM crack tip enrichment for a crack terminating at a bi-material interface[J].Engineering Fracture Mechanics,2013,102(2):51―64.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部