期刊文献+

最新中国陆地数字高程基准模型:重力似大地水准面CNGG2011 被引量:92

The Recent Chinese Terrestrial Digital Height Datum Model: Gravimetric Quasi-Geoid CNGG2011
下载PDF
导出
摘要 回顾近20年来国内外国家局部大地水准面模型研究的概况和发展背景,采用Stokes-Helmert方法,计算了一个新的2′×2′中国重力和1985国家高程基准似大地水准面数值模型(CNGG2011),采用了100万余陆地重力数据和SRTM 7.5″×7.5″地形高数据,以及649个B级GPS水准点数据。CNGG2011平均精度为±0.13m,东部地区±0.07m,西部地区±0.14m。各省区局部似大地水准面平均精度为±0.06m,东部为±0.05m,西部为±0.11m。西藏精度为±0.22m。并讨论重力大地水准面与GPS水准的关系,提出今后进一步精化我国高程基准大地水准面模型的构想。 The status and development background on the research of the local geoid of the world in the recent 20 years is reviewed in this paper. An updated 2′×2′ digital quasi-geoid model (CNGG201;) for the National Height Datum 1985 of China is computed by using Stokes-Helmert method. More than one million land gravity measurements, 7.5″×7.5″ digital elevation data from SRTM, and 649 order B GPS/leveling data are used in the computation of CNGG2011. The average accuracy ofCNGG2011 is±0.13m in China, and±0.07m and ±0.14m in eastern and western China, respectively. The average accuracy in each province is±0.06 m, and they are±0.05 m and±0.11 m in the East and the West of China respectively, and it is±0. 22 m in the Tibet area. The relationship between the gravimetric geoid and the GPS/leveling is also discussed and some strategies for geoid refinement in the future are also proposed for National Height Datum in China.
作者 李建成
出处 《测绘学报》 EI CSCD 北大核心 2012年第5期651-660,669,共11页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41210006 40637034) 国家创新研究群体科学基金(41021061)
关键词 第二类Helmert凝集法 重力似大地水准面 数字高程基准 Helmert's second method of condensation gravimetric quasi-geoid digital height datum
  • 相关文献

参考文献23

  • 1李建成.我国现代高程测定关键技术若干问题的研究及进展[J].武汉大学学报(信息科学版),2007,32(11):980-987. 被引量:67
  • 2MCNUTT M K, JUDGE A V. The Super Swell and Mantle Dynamics Beneath the South Pacific [J]. Science, 1990, 248: 969-975.
  • 3SANSOF, RUMMEL R. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. [M]. Lecture Notes in Earth Sciences 65, New York Berlin/Heidelberg= Springer, 1997.
  • 4MII.BERT D G. Computing GPderived Orthometric Heights with the GEOIDg0 Geoid Height Model [C] // Technical Papers of the 1991 ACSM-ASPRS Fall Convention, Washington D C: American Congress on Surveying and Mapping, 1991.
  • 5MILBERT. D G, SCHULTZ D. GEOID . The National Geodetic Survey Geoid Computation Program [R]. Silver Spring: Geodetic Services Division, National Geodetic Survey, NOAA. 1993.
  • 6MILBERT, D G. Improvement of a High Resolution Geoid Height Model in the United States by GPS Height on NAVD 88 Benchmarks [C]//New Geoids in the World 1GES Bulletin 4, Milan; International Geoid Service,1995. 13-36.
  • 7MILBERT, D G, SMITH D A. Converting GPS Height into NAVD 88 Elevation with the GEOID96 Geoid Height Model [C] // Proceedings of GIS/LIS ' 96 Annual Conference, Washington D C: American Congress on Surveying and Mapping, 1996 : 681-692.
  • 8SMITH D A, MILBERT D G. The GEOID96 High-resolution Geoid Height Model for the United States [J]. Journal of Geodesy, 1999, 73(5)= 219-236.
  • 9SMITH D A, ROMAN D R. GEOID99 and G99SSS: One Arc-minute Models for the United States [J]. Journal of Geodesy, 2001, 75: 469-490.
  • 10ROMAN D R, WANG Y M, HENNING W, et al Assessment of the New National Geoid Height Model GEOID03 [J]. Surveying and Land Information Science 2004, 64(3) 153-162.

二级参考文献11

  • 1管泽霖,左传惠,吴黎明,王志同.用FFT计算川西地区的高程异常[J].武汉测绘科技大学学报,1993,18(3):11-17. 被引量:2
  • 2李建成 宁津生.局部大地水准面精化的理论和方法[A]..见:陈永龄院士90寿辰专辑[C].北京:测绘出版社,1999.71~83.
  • 3Lemoine F G,Kenyon S C,Factor J K,et al.The Development of the Joint NASA GSFC and the NIMA Geopotential Model EGM96[R].NASAI TP-1998-206861,NASA Goddard Space Flight Center,Greenbelt,Maryland,1996.
  • 4Martinec Z.Boundary-Value Problems for Gravimetric Determination of a Precise Geoid[M].Berlin,Heidelberg,NewYork:Springer,1998.
  • 5Jekeli C,Serpas J G.Review and Numerical Assessment of the Direct Topographical Reduction in Geoid Determination[J].J Geod,2003,77:226-239.
  • 6Huang J,Sideris M G,Vanecek P,et al.Numerical Investigation of Downward Continuation Techniques for Gravity Anomalies[J].Bolletino Di Geodesia E Scienze Affini LXII,2003a(1):33-48.
  • 7Huang J,V eronneau M,Pagiatakis S D.On the Ellipsoidal Correction to the Spherical Stokes Solution of the Gravimetric Geoid[J].J Geod,2003b,77:171-181.
  • 8Smith W H F,Wessel P.Gridding with Continuous Curvature Splines in Tension[J].Geophysics,1990,55:293-305.
  • 9Martinec Z,Matyska C,Grafarend E W,et al.On Helmert's Second Condensation Technique[J].Manuscr Geod,1993,19:213-219.
  • 10Martinec Z.Stability Investigations of a Discrete Downward Continuation Problem for Geoid Determination in the Canadian Rocky Mountains[J].J Geod,1996,70:805-828.

共引文献107

同被引文献777

引证文献92

二级引证文献462

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部