期刊文献+

基于模拟谐振子的优化K-means聚类算法 被引量:4

Optimized K-means clustering algorithm based on simulated harmonic oscillator
下载PDF
导出
摘要 针对K-means算法全局搜索能力的不足,提出了基于模拟谐振子的优化K-means聚类算法(SHO-KM),该算法克服了K-means聚类算法对初始聚类中心选择敏感问题,能够获得全局最优的聚类划分。为了提高聚类划分质量,在聚类过程中采用基于Fisher分值的属性加权的实体之间距离计算方法,使用属性加权距离计算方法进行聚类划分时,无论是球形数据还是椭球形数据都能够获得较好的聚类划分结果。对KDD-99数据集的仿真实验结果表明,该算法在入侵检测中获得了理想的检测率和误报率。 Aiming at the lack of global search capability of K-means algorithm, optimized K-means clustering algorithm based on Simulated Harmonic Oscillator(SHO-KM)is presented, which can overcome the problem of initial clustering center selection sensitivity of K-means and can obtain global optimized clustering partition. To improve clustering partition quality, an attribute-weighting distance computation method based on Fisher value is used in custering process. The better clustering partition can also be obtained for whether spherical data or ellipsodal data. Simulation experiment is implemented over data set KDD-99. The result shows that the satisfying detection rate and false acceptance rate can be obtained in network intrusion detection.
出处 《计算机工程与应用》 CSCD 2012年第30期122-127,共6页 Computer Engineering and Applications
基金 黑龙江省自然科学基金项目(No.F200923)
关键词 聚类 模拟谐振子 Fisher分值 属性加权 入侵检测 clustering simulated harmonic oscillator Fisher value attribute-weighting intrusion detection
  • 相关文献

参考文献12

二级参考文献96

共引文献191

同被引文献36

  • 1冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11
  • 2刘静,须文波,孙俊.基于量子粒子群算法求解整数规划[J].计算机应用研究,2007,24(3):79-81. 被引量:17
  • 3孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011.
  • 4United States General Accounting Office. Computer attacks at department of Defense Pose increasing risks[R].WashingtonD.C-GAO/AIMD-96-84 Defense Information Security,1996.
  • 5United States General Accounting Office. Opportunities for improved OMB Over sight of agency Practices[R].WashingtonD.C.:GAO/AIMD-96-110 Information Security,1996.
  • 6公安部公共信息网络安全监察局.2006年全国信息网络安全状况与计算机病毒疫情调查分析报告[R]计算机安全,2006.
  • 7BAI Yuebin,KOBAYSHI H. Intrusion detection systems:techno1ogy and development[A].Washington,DC,2003.710-715.
  • 8COLORNI A,DORIGO M,MANIEZZO V.Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life.Amsterdam:Elsevier Publishing,1991:134-142.
  • 9COLORNI A,DORIGO M,MANIEZZO V.An investigation of some properties of an ant algorithm[C]//PPSN 1992:Proceeding of the Parallel Problem Solving from Nature Conference.Amsterdam:Elsevier Publishing,1992:509-520.
  • 10KENNEDY J.Particle swarm optimization[M]//Encyclopedia of Machine Learning.New York:Springer US,2010:760-766.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部