期刊文献+

基于矩阵的数据流频繁模式预测算法 被引量:1

Matrix-based Algorithm for Predicting Frequent Patterns over Data Streams
下载PDF
导出
摘要 随着数据挖掘的广泛应用,许多实际的数据挖掘应用需要用过去和当前数据对未来数据状态进行预测,针对这一现状,文中提出基于矩阵的数据流频繁模式预测算法(MFP).MFP算法可预测在下一时间窗口中可能性较大的频繁项集,以满足用户需要.该算法首先将数据转换为0-1矩阵;然后通过矩阵剪裁和位运算更新矩阵,并从中挖掘频繁项集;最后,利用当前窗口数据预测下一时间窗口中可能出现的频繁项集.实验结果表明,MFP算法在不同实验环境下能有效预测频繁项集,该算法是可行的. With the wide application of data mining, many practical data mining applications need to use past and current data to predict the future state of the data. To solve this problem, we propose a new method (MFP) for predicting frequent patterns over data streams. MFP algorithm can predict those frequent itemsets that have high potential to become frequent in the subsequent time windows, to meet users' needs. Firstly, the algorithm converts the data to 0--1 matrix. Then it will update the matrix by tailoring it and bit operations, from which mine frequent itemsets as well. Finally, it will predict possible frequent itemsets that may appear in the next time window by using the current data. Experimental results show that MFP algorithm can predict the frequent itemsets in different experimental conditions, therefore, the algorithm is feasible.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第10期60-63,68,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(60603047) 教育部留学回国人员科研启动基金项目 辽宁省科技计划项目(2008216014) 辽宁省教育厅高等学校科研基金(L2010229) 大连市优秀青年科技人才基金(2008J23JH026)
关键词 频繁项集 数据流 数据挖掘 矩阵 预测 frequent itemset data stream data mining matrix predict
  • 相关文献

参考文献14

  • 1张忠平,王浩,薛伟,夏炎.动态滑动窗口的数据流聚类方法[J].计算机工程与应用,2011,47(7):135-138. 被引量:19
  • 2Haifeng Lathing Chen. Mining non-derivable frequent itemsets over data stream [J]. Data&Knowledge En- gineering, 2009(68) :481-498.
  • 3Hua-Fu Li. Interactive mining of top-K frequent closed, itemsets from data streams[J]. Expert Systems with Applications, 2009(36): 10779-10788.
  • 4Joong Hyuk Chang, Hye-Chung (Monica) Kum Fre- quency-based load shedding over a data stream of tup- les [J]. Information Sciences, 2009(179) : 3733-3744.
  • 5Jin R, Agrawal G. Efficient decision tree construction on streaming data [C] //The ACM SIGKDD 9th Inter- national Conference on Knowledge Discovery and Data Mining. Washington, 2003: 2-6.
  • 6Raymond T Ng,Jiewei HarL Efficient and effetive clus- tering methods of spatial data mining [C]// Proceed- ings of the 20th VLDB Conference. Chile: Santiago, 1994: 144-155.
  • 7Shichao Zhang, Zhi Jin, Jingli Lu. Summary queries for frequent itemsets mining [J] The Journal of Systems and Software, 2010(83): 405-411.
  • 8Tao Li, Shenghuo Zhu, Mitsunori Ogihara. A new dis- tributed data mining model based on similarity [C] ff Proceedings of the 18th Annual ACM Symposium on Applied Computing. Canada: Vancouver, 2003 : 432- 436.
  • 9Agrawal R, Imilienski T, Swami A. Mining associa- tion rules between sets of items in large databases I-C] // Proceedings of the ACMSIGMOD International Conference on Management of Data. Washington, DC, 1993:207-216.
  • 10Han Jiawei, Pei Jian, Yin Yiwer. Mining frequent pat terns without candidate generation[C]/// Proceedings of the ACM SIGMOD' 00. Dallas, TX, USA:ACM Press, 2000.

二级参考文献23

  • 1朱红蕾,李明.一种高效维护关联规则的增量算法[J].计算机应用研究,2004,21(9):107-109. 被引量:9
  • 2Xiu-LiMa,Yun-HaiTong,Shi-WeiTang,Dong-QingYang.Efficient Incremental Maintenance of Frequent Patterns with FP-Tree[J].Journal of Computer Science & Technology,2004,19(6):876-884. 被引量:9
  • 3张素兰.一种基于事务压缩的关联规则优化算法[J].计算机工程与设计,2006,27(18):3450-3453. 被引量:16
  • 4常建龙,曹锋,周傲英+.基于滑动窗口的进化数据流聚类[J].软件学报,2007,18(4):905-918. 被引量:61
  • 5AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 1993:207-216.
  • 6AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules [ C ]//Proc of the 20th International Conference on VLDB. Santiago Chile: [ s,n] ,1994:487-499.
  • 7HAN J, KAMBER M. Data mining: concepts and techniques [ M ]. Beijing : Higher Education Press, 2001 : 123-140.
  • 8HAN Jia-wei, PEI Jian, YIN Yi-wen. Mining frequent patterns without candidate generation : a frequent-pattern tree approach [ J ]. Data Mining and Knowledge Discovery, 2004,8( 1 ) :53-87.
  • 9WANG Jian-yong, Hart J, LU Y, et al. An efficient algorithm for mining top-k frequent dosed itemsets [ J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (5) :652-663.
  • 10CHEUNG D W, HAN Jia-wei, NG V, et al. Maintenance of discovered association rules in large database : an incremental updating technique [ C ]//Proc of the 12th International Conference on Data Engineering. New Orleans : IEEE Computer Society, 1996 : 106-114.

共引文献23

同被引文献34

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部