期刊文献+

具有完全重构二维FIR菱形子带滤波器组的设计

Design of Two-Dimensional Perfect Reconstruction FIR Diamond Filter Banks
下载PDF
导出
摘要 提出了一种具有完全重构的二维零相位有限冲击响应 ( FIR)菱形子带滤波器组的设计方法 ,该方法采用变量代换并通过调整窗函数的参数和传递函数来改变频率特性 ,能方便、灵活地控制频率特性 .设计实例表明 ,所设计的滤波器频率特性较好 ,用设计的滤波器对一真彩色内窥镜图像进行处理 。 This paper presented a new method of designing 2dimensional linear phase FIR diamond subband filters having the perfect reconstruction property. This method can provide the flexibility of controlling the frequency characteristics of the filters with ease. The key technology of this method is to use variable transformation as a substitute for the frequency transformation presented by McClellan. The frequency characteristics are adjusted via changing the variable of window function and transformation function. The designed examples show fine frequency characteristics. A true color endoscope image was processed by a designed filter and fine results were arrived.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2000年第6期840-844,共5页 Journal of Shanghai Jiaotong University
基金 国家教委重点科研项目资助 !(95Y-15)
关键词 图像处理 完全重构 FIR菱形子带滤波器组 image processing perfect reconstruction filters frequency response McClellan transformation zero-phase
  • 相关文献

参考文献7

  • 1[1] Kovacevic J, Vetterli M. Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn[J]. IEEE Trans on IT, 1992, 38(2):535~555.
  • 2[2] Ansari R, Guillemot C, Kaiser J. Wavelet construction using Lagrange halfband filters [J]. IEEE Trans on Circuits and Systems, 1991, 38(9):1116~1117.
  • 3[3] Robert, Bamberger H, Mark J, et al. A filter bank for the directional decomposition of images: theory and design[J]. IEEE Trans on SP, 1992, 40(4):882~892.
  • 4[4] Tay D H B, Kingsury N G. Flexible design of multidimensional perferct reconstruction FIR 2-band filters using transformations of variables [J]. IEEE Transactions on Image Processing, 1990, 2(4):466~479.
  • 5[5] Kingsbury N G, Tay D B H. Multidimensional wavelet design using generalised transformations [A]. IEE Colloquium on Applications of Wavelet Transforms in Image Processing [C]. London, 1993.1~6.
  • 6[6] Mersereau R M, Mecklenbrauker W F G, Thomas F, et al. McClellan transformations for two-dimensional digital filtering: I-design[J]. IEEE Trans on Circuits and Systems, 1979,23(7):405~413.
  • 7[7] Shapiro J M, Staelin D H. Algorithms and systolic architectures for multidimensional adaptive filtering via McClellan transformations [J]. IEEE Trans on Circuits and Systems for Video Technology, 1992, 2(1):60~70.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部