期刊文献+

基于PCA与OLPP混合方法的化工过程故障检测 被引量:4

A hybrid method based on PCA plus OLPP for fault detection in chemical process
原文传递
导出
摘要 对于复杂的工业过程,采集到的过程数据能反映出生产过程的内在变化和运行状况。本文提出一种新的多变量统计过程监测策略,数据建模过程包含主元分析(Principal Component Aanlysis,PCA)与正交局部保持投影(Orthogonal Locality PreservingProjection,OLPP)两步。首先利用PCA在不丢失任何信息的前提下将原始数据旋转成不相关的潜变量,然后再作OLPP以提取能表征过程正常数据内在局部近邻结构的特征用于故障检测。利用T^2和SPE(或Q)统计量以及核密度估计方法确定的控制限进行化工过程的在线监测,TE过程仿真实验验证了该混合方法的有效性和优越性。 In this paper, a novel approach for multivariate statistical process monitoring is proposed, which consists of two steps: principal component analysis (PCA) plus orthogonal locality preserving projection (OLPP). PCA is firstly applied to rotate the original process dataset to tmcorrelated latent variables without losing any information, and then perform OLPP to extract first several components to represent the intrinsic structure of process data from normal operating condition. Hotelling's T2 and the squared prediction error (SPE or Q) statistic charts are then presented and the kernel density estimation is utilized to determine a proper control limits for the two statistics. Case study on the Tennessee Eastman benchmark process demonstrates the superiority of PCA plus OLPP based method in fault detection over PCA and LPP based monitoring methods.
机构地区 华东理工大学
出处 《计算机与应用化学》 CAS CSCD 北大核心 2012年第9期1065-1068,共4页 Computers and Applied Chemistry
基金 国家自然科学基金(21176073) 博士点基金(20090074110005) 曙光计划(09SG29) 新世纪优秀人才(NCET-09-0346)
关键词 故障检测 主元分析 正交局部保持投影 TE过程 fault detection, principal component analysis, orthogonal locality preserving projection, TE process
  • 相关文献

参考文献13

  • 1Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial System. London: Spring-Verlag, 2001.
  • 2Qin S J. Statistical process monitoring: basic and beyond. Journal of Chemometrics, 2003, 17(8-9):480-502.
  • 3Lee J M, Yoo C, Lee I B. Statistical process monitoring with independent component analysis. Journal of Process Control, 2004 14 (5):467-485.
  • 4Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59(1):223-234.
  • 5Ge Z Q, Song z H. Process monitoring based on independentcomponent analysis-principal component analysis (ICA-PCA) and similarity factors. Industrial & Engineering Chemistry Research, 2007, 46(7):2054-2063.
  • 6He X F. Locality preserving projections. Ph.D Thesis, The University of Chicago, America, 2005.
  • 7Hu K, Yuan J. Multivariate statistical process control based on multiway locality preserving projections. Journal of Process Control, 2007, 18(7-8):797-807.
  • 8Shao J D, Rong G Lee J M. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis. Chemometrics & Intelligent Laboratory Systems, 2009, 96(1):75-83.
  • 9Cai D, He X F, Han J. Orthogonal laplaciarffaces for face recognition. IEEE Transactions on Image Process, 2003, 15(11): 3608-3614.
  • 10Chen Q, Wyrme R J, Goulding P, Sandoz D. The application of principal component analysis and kernel density estimation to enhance process monitoring. Control Engineering Practice, 2000, 8(5):531-543.

同被引文献28

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部