期刊文献+

复合SERS基底的构建及性质 被引量:4

Construction of Composite Surface-enhanced Raman Scattering(SERS) Substrates by Silver Nanoparticle Assembly
下载PDF
导出
摘要 通过自组装方法以对巯基苯胺(PATP)为偶联分子,在石英基片上构筑了多种形貌的银钠米粒子单层结构和三明治结构.研究了组装膜在不同激发线下表面增强拉曼散射(SERS)的增强差异.研究结果表明,单层基底和三明治基底中偶联分子的SERS信号因银纳米粒子间的电磁场耦合而显著增强,且在三明治结构中增强更加明显.对复合SERS基底增强因子进行计算可知,复合SERS基底的表面等离子体共振(SPR)峰与激发线的匹配程度越好,其增强因子越大.在三明治结构中更易发生PATP分子转变为对巯基偶氮苯(DMAB)分子的激光诱导催化偶联反应.另外,该激光诱导催化偶联反应与激发波长密切相关. Metal-molecule-metal sandwich structures on quartz slides were constructed by the self-assembly of Ag nanoparticles with various shapes via p-aminothiophenol (PATP) molecules as linkers. These sandwich structures were characterized by extinction spectroscopy and surface-enhanced Raman scattering(SERS) spec- troscopy using different excitation lasers. The results demonstrated that SERS intensities of PATP in sandwich structures were much stronger than those on silver nanoparticle monolayers. The calculated enhancement fac- tors (EFs) of PATP on the composite SERS substrates showed that the large EFs appeared when the SPR peaks of SERS substrates well matched excitation lines. In these sandwich structures, PATP molecules tended to form a new surface species (p, p'-dimercaptoazobenzene, DMAB ) under a laser-induced catalytic coupling reaction. In addition, the laser-induced catalytic coupling reaction was closely related to excitation wave- lengths.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第10期2308-2314,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:91027010,21073073,20903043,20973075) 高等学校博士学科点专项科研课题(批准号:20090061120089) 超分子结构与材料国家重点实验室开放课题(批准号:SKLSSM201125)资助
关键词 银纳米粒子 电磁场增强 表面增强拉曼散射 Silver nanoparticles Electromagnetic field enhancement Surface-enhanced Raman scattering( SERS )
  • 相关文献

参考文献36

  • 1Fleisehman M. Chem. Phys. Lett. [J], 1974, 26(2) : 163-166.
  • 2Jeanmaire D. L. , van Duyne R. P.. J. Electroanal. Chem. [J], 1977, 84(1) : 1-20.
  • 3Nie S. , Emory S. R.. Science[J], 1997, 275(5303) : 1102-1106.
  • 4Kneipp K. , Wang Y. , Kneipp H. , Perelman L. T. , Itzkan I. , Dasari R. , Feld M. S.. Phys. Rev. Lett. [J], 1997,78(9): 1667- 1670.
  • 5Campion A. , Kambhampati P.. J. Chem. Soc. Rev. [J], 1998, 27(4) : 241-250.
  • 6Ling X. , Li W. , Song Y. , Yang Z. , Xu Y. , Weng S. , Xu Z. , Fu X. , Zhou X. , Wu J.. Spectroscopy and Spectral Analysis [ J ], 2000, 20(5) : 692-693.
  • 7Rowe I. E. , Chank C. V.. Phys. Rev. Lett. [J] , 1980, 44:1770-1773.
  • 8Gi X., Dong J.. An. Chem. [J], 1991,63(20): 2393-2397.
  • 9Chen L. , Han X. X. , Yang J. X. , Zhou J. , Lu Z. C. , Song W. , Zhao B. , Xu W. Q. , Ozaki Y.. Chem. Res. Chinese Universities [J], 2011,27(4): 683-687.
  • 10Lu L. H. , Wang H. S. , Zhou Y. H. , Xi S. Q. , Zhang H. J. , Hu J. W. , Zhao B.. Chem. Commun. [J] , 2002:144-145.

二级参考文献169

共引文献66

同被引文献64

  • 1Wang Y. Q. , Yan B. , Chen L. X. , Chem. Rev. , 2013, 113(3), 1391-1428.
  • 2Kneipp K. , Wang Y. , Kneipp H. , Perelman L. T. , Itzkan I. , Dasari R. R. , Feld M. S. , Phys. Rev. Lett. , 1997, 78(9), 1667- 1670.
  • 3Nie S. , Emory S. R. , Science, 1997, 275(5303), 1102-1106.
  • 4Lai Y. C. , Cui C. , Jiang X. H. , Zhu S. , Zhan J. H. , Analyst, 2013, 138(9) , 2598-2603.
  • 5Cowcher D. P. , Xu Y. , Goodacre 1t. , Anal. Chem. , 2013, 85(6), 3297-3302.
  • 6Shin K. , Ryu K. , Lee H. , Kim K. , Chung H. , Sohn D. , Analyst, 2013, 138(3), 932--938.
  • 7Chen L. , Han X. X. , Yang J. X. , Zhou J. , Lu Z. C. , Song W. , Zhao B. , Xu W. Q. , Ozaki Y. , Chem. Res. Chinese Universities 2011, 27(4), 683-687.
  • 8Jiao Y. , Ryckman J. , Ciesielski P. , Escobar C. , Jennings G. , Weiss S. , Nanotechnology, 2011, 22(29), 295302-1-295302-6.
  • 9Farquharson S. , Shende C. , Inscore F. E. , Maksymiuk P. , Gift A. , J. Raman Spectrosc. , 2005, 36(3 ), 208-212.
  • 10Piorek B. D. , Lee S. J. , Santiago J. G. , Moskovits M. , Banerjee S. , Meinhart C. D. , Proc. Natl. Acad. Sci. , 2007, 104(48), 18898-18901.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部