期刊文献+

基于塔型对偶树方向滤波器组的弱小目标背景抑制方法 被引量:1

Background Suppression for Dim and Small Targets Based on Pyramidal Dual-tree Directional Filter Bank
下载PDF
导出
摘要 复杂背景抑制是红外监视告警系统探测远距离目标的一个难题,提出了一种将塔型对偶树方向滤波器组与改进的视网膜皮层理论相结合的弱小目标背景抑制方法。首先,采用塔型对偶树方向滤波器组对图像进行多尺度、多方向分解,提取图像的多尺度和方向细节特征;然后,根据目标和背景杂波信号的差异,通过应用改进的视网膜皮层理论公式调整分解后的各子带系数,从而将红外图像中弱小目标信号和背景杂波分离,达到抑制背景的目的。与二维最小均方误差和最大中值滤波方法相比较,实验结果显示该方法能有效地检测出信杂比在1.6以上的目标。 The complex background suppression is difficult for infrared warning system detecting long-distance target.A background suppression method based on pyramidal dual-tree directional filter bank was proposed for some dim and small targets and retina theory was introduced to improve its ability.Firstly,the filter bank was adopted to decompose the input infrared image into multiple scales and directions and extract the image's features.Then,according to the difference between target and background clutter signal,the decomposed sub-band's coefficients were adjusted by using improved retina theory equations to suppress the background details and enhance target information.Several groups of experiment results demonstrate that the proposed method can detect the target with SCR1.6 effectively,compared with several classical background suppression method,such as two-dimensional least means square(TDLMS) and max median(MMed) filters.
出处 《兵工学报》 EI CAS CSCD 北大核心 2012年第9期1036-1040,共5页 Acta Armamentarii
基金 中央高校基本科研业务费专项资金项目(72005623) 教育部科学技术研究重点项目(108114) 国家自然科学基金项目(60902080)
关键词 信息处理技术 目标检测 背景抑制 塔型对偶树复方向滤波器组 视网膜皮层理论 information processing target detection background suppression pyramidal dual-tree complex directional filter bank retina theory
  • 相关文献

参考文献14

  • 1Chen J Y, Reed IS. A detection algorithm for optical targets in clutter[ J]. IEEE Transactions on Aerospace and Electronic Sys- tems, 1987, 23(1) : 46 -59.
  • 2吴一全,罗子娟.基于最小二乘支持向量机时域背景预测的红外弱小目标检测[J].兵工学报,2010,31(6):678-684. 被引量:10
  • 3Lin J N, Nie X, Unbehauen R. Two-dimensional LMS adaptive filter incorporating a local-mean estimator for image processing [ J]. IEEE Transactions on Circuits and Systems: Analog and Dig- ital Signal Processing, 1993: 40(7) : 417 -428.
  • 4于劲松,万九卿,高秀林.红外图像弱小点目标检测技术研究[J].兵工学报,2008,29(12):1518-1521. 被引量:15
  • 5Hong Li, Yantao Wei, Luoqing Li. Infrared moving target detec- tion and tracking based on tensor locality preserving projection [ J]. Infrared Physics & Technology, 2010, 53: 77- 83.
  • 6Deshpande S D, Er M H, Venkateswarlu R, et al. Max-mean andmax-median filters for detection of small targets [ C ] Jj SPIE Pro- ceedings on Signal and Data Processing. Denver: SPIE, 1999: 3809 : 74 - 83.
  • 7Yilmaz A, Shafique K, Shah M. Target tracking in airborne for- ward looking infrared imagery [ J ]. Imaging and Vision Compu- ting, 2003, 21(7) 623-635.
  • 8Porat B, Friedlander B. A frequency domain algorithm to multi- frame detection and estimation of dim targets [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1990, 12 (4) : 398 -401.
  • 9Stephen DelMarco, Sos Agaian. The design of wavelets for image enhancement and target detection [ J]. SPIE, 2009, 7351 : 1 - 5.
  • 10Biyin Zhang, Tianxu Zhang, Zhiguo Cao, et al. Fast new small target detection algorithm based on a modified partial differential equation in infrared clutter [ J ]. SPIE Optical Engineering, 2007, 46 (10) : 106401-1 - 6.

二级参考文献22

共引文献22

同被引文献26

  • 1王咏胜,付永庆.基于非抽样复轮廓波变换的图像去噪算法研究[J].光电子.激光,2009,20(8):1118-1122. 被引量:3
  • 2于振华,蔡远利.基于在线小波支持向量回归的混沌时间序列预测[J].物理学报,2006,55(4):1659-1665. 被引量:15
  • 3Zhu F Y,Qin S Y, A moving IR point target detection algorithm based on reverse phase feature of neighborhood in difference be- tween neighbor frame images[J]. Chinese Journal of Aeronautics, 2006, 9(3) : 225 -232.
  • 4Zhang T X,Li M,Zuo Z R, et al. Moving dim point target detec- tion with three-dimensional wide-to-exact search directional fihe- ring[ J ]. Pattern Recognition Letters, 2007,28 (2) :246 - 253,.
  • 5Xu Y S, Weaver J B, Healy D M. Wavelet transform domain fil- ters: a spatially selective noise fltration technique [ J ]. IEEE Transactions on Image Processing, 1994, 3 ~6 ~ : 747 - 758.
  • 6Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2) : 617 -643.
  • 7Zhang L, Bao P, Pan Q. Threshold analysis in wavelet-based de- noising[ J ]. IEEE Electronics Letters,2001, 37 (24) : 1485 - 1486.
  • 8Cand~s E J. Ridgelets: theory and applications[ D]. California: Stanford University, 1998.
  • 9Candes E J, Donoho D L. Curvelets-a surprisingly effective non- adaptive representation for objects with edges ~ R ]. Palo Alto, California: Stanford University,1999.
  • 10Minh N D, Vetterli M. The contourlet transform: an efficient di- rectional multiresolution image representation[ J~. IEEE Transac- tions on Image Processing, 2005, 14 ( 12 ) : 2091 - 2106.

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部