摘要
为解决环氧类有机胶耐火性差的问题,选择工业副产品粒化高炉矿渣为原料,水玻璃为碱性激活剂,制备了一种用于FRP加固混凝土结构的耐高温无机胶———碱矿渣胶凝材料.通过考察水玻璃模数与用量,以及水用量对胶块抗压强度的影响,优选出碱矿渣胶凝材料的最佳配比为:水玻璃模数Ms=1.0,水玻璃用量为矿渣粉质量的12%,水用量为矿渣粉质量的42%.通过面内剪切试验,研究了FRP布和胶黏剂类型对FRP布与混凝土基材的界面剪切性能的影响,建议了2种CFRP布的有效黏结长度为160和220 mm.试验结果表明:碱矿渣胶凝材料用于粘贴CFRP布加固混凝土结构效果良好,其面内剪切强度与有机胶相当,界面破坏呈现胶层下混凝土大面积剥离的理想破坏模式.
Since the fire resistance of current epoxy adhesive is poor, a novel alkali-activated slag cementitious material (AASCM) is prepared by using industry byproduct granulated blast furnace slag as raw material and water glass as alkaline activator, which is a fire-resistant inorganic adhesive used for fiber reinforced polymer (FRP) strengthened concrete structures. The influence of modulus and dosage of water glass as well as dosage of water on the compressive strength of samples was in- vestigated and the optimized mix proportion of the AASCM was determined. The optimized modulus of water glass Ms is 1.0, and the quality ratio of water glass to slag is 12% and the quality ratio of water to slag is 42%. Through the in-plane shear tests, the influence of the types of FRP and adhe- sive on the interracial shear performance between FRP sheets and concrete substrates was studied. Two types of CFRP effective bond lengths 160 and 220 mm were suggested. The test results indicate that the AASCM shows good effect on strengthening concrete structures with CFRP sheets. The in- plane shear strength of AASCM is comparable to that of organic adhesive. Ideal failure mode, i.e. large area concrete is stripped from the concrete surface, can be found after interfacial failure.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第5期962-969,共8页
Journal of Southeast University:Natural Science Edition
基金
国家教育部长江学者奖励计划资助项目(2009-37)
教育部博士点基金资助项目(20092302110046)
黑龙江省自然科学基金资助项目(E200916)
哈尔滨工业大学"985工程"优秀科技创新团队建设资助项目(2011)
关键词
碱矿渣胶凝材料
剪切
浸润性
破坏模式
alkali-activated slag cementitious material
shear
wettability
failure mode