期刊文献+

一种洞察客户的“价值-行为”数据挖掘方法及应用 被引量:2

"Value-acts" data mining technologies and applications on customer insight
下载PDF
导出
摘要 从客户价值理论角度,提出一种客户"价值-行为"洞察分析模型,将客户价值评价、价值客户聚类、关联行为分析等独立分析单元,逻辑联结于同一分析模型下,以获取可反映不同价值客户"类"特征及其消费行为轮廓的知识。以X区移动通信客户价值管理为实例,阐述了方法应用及营销策略分析的主要过程,为通信企业提供了一种价值客户的有效管理策略。 From the theoretical point of view of customer value, it offers a customer insight "value-behavior" analysis model, which logically links independent analysis unit of customer value assessment, the value of customer clustering with the associated behavior analysis in the same analysis model, so that it obtained the knowledge that can reflect different customer value "class" characteristics and the profile of consumer behavior. Taken X area mobile communication customer value management as the example, it described the main process of the method application and marketing strategy analysis, thus provided effective management strategies of value customer for the communications business.
出处 《西安邮电学院学报》 2012年第5期116-121,共6页 Journal of Xi'an Institute of Posts and Telecommunications
关键词 移动通信客户 客户价值 客户洞察力 聚类分析 关联分析 mobile clients, customer value, customer insight, clustering analysis ,association a-nalysis
  • 相关文献

参考文献6

二级参考文献24

共引文献21

同被引文献15

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2梁循.通讯行业客户行为的关联挖掘[J].计算机技术与发展,2006,16(3):1-4. 被引量:1
  • 3Gong Songjie. The collaborative fihering recommendation based on similar-priority and fuzzy clustering[ C]//Proceeding of 2008 workshop on power electronics and intelligent transporta- tion system. [ s. 1. ] : Inst of Elec and Elec Eng Computer Soci- ety, 2008:248 -251.
  • 4Candillier L, Meyer F, Boulle M. Comparing state-of-the-art collaborative filtering systems[ C]//Proceedings of the 5th in- ternational conference on machine learning and data mining in pattern recognition. [ s. 1. ] : Springer-Verlag ,2007:548-562.
  • 5Deshpande M, Karypis G. Item-based top-n recommendation algorithms [ J ]. ACM Transactions on Information Systems, 2004,22( 1 ) :143-177.
  • 6McLaughlin M R, Herlocker J L. A collaborative filtering algo- rithm and evaluation metric that accurately model the user ex-perience [ C ]//Proceedings of SIGIR. Sheffield : Association for Computing Machinery ,2004:329-336.
  • 7Ma Hao, King I, Lyu M R. Effective missing data prediction for collaborative filtering[ C ]//Proceedings of the 30th annual in- ternational ACM SIGIR conference on research and develop- ment in information retrieval. Amsterdam, The Netherlands: [ s. n.] ,2007:39-46.
  • 8Kim B M, Li Q, Park C S, et al. A new approach for combining content-based and collaborative filters[ J]. Journal of Intelli- gent Information System ,2006,27 ( 1 ) :79-91.
  • 9Sarwar B, Karypis G, Konstan J, et al. Item- based collabora- tive filtering recommendation algorithms [ C ]//Proceedings of the 10th international World Wide Web conference. [ s. 1. ] : [ s. n. ] ,2001:285-295.
  • 10田伟,彭玉青.基于电子商务应用的协同过滤技术改进综述[J].计算机工程与科学,2008,30(10):61-63. 被引量:6

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部