期刊文献+

脉冲电流波形对固体电枢滑行性能的影响 被引量:5

Effect of pulse current waveform on sliding performance of solid armatures
下载PDF
导出
摘要 利用一种小型脉冲功率系统的脉冲形成网络进行波形调制,得到了锯齿、凸顶和平顶脉冲电流波形,利用这三种脉冲电流开展了导轨型电磁驱动系统中的固体电枢滑行实验,通过测量电枢极限出口速度,比较了不同脉冲电流波形对固体电枢滑行性能的影响。结果表明:电流变化急剧的锯齿波形在较低的充放电能量下就会引起固体电枢与导轨界面接触失效,发生烧蚀现象,因而不利于固体电枢的滑行;相同充放电能量条件下,凸顶波形比平顶波形得到的固体电枢出口测速高,即效率更好;平顶波形可使固体电枢承受更高的充放电能量,且平顶波形比凸顶波形的极限出口测速高;三者相比,平顶波形最有利于固体电枢与导轨良好接触,电枢的滑行性能表现得最好。 By the waveform modulation with the pulse form network (PFN) of a small experimental pulsed power system, the saw-tooth waveform, convex-topped waveform and flat-topped waveform are gotten, and the three kinds of pulse current waveforms are used for the sliding experiment of the solid armature of the electromagnetic rail driving system (EMRDS). By measuring the ultimate muzzle velocity of the experimental armature, the effects of different pulse current waveforms on the slid ing performance of the solid armature are compared. The experimental results show that under low charging and discharging energy the abruptly changed saw^tooth waveform is easy to cause contact fail, and often makes the ablation phenomenon happen, so it is unfavorable to the sliding performance of solid armatures; under the same charging and discharging energy, the measured muz- zle velocity under the convex-topped waveform pulse is higher than that under the flat-topped one, which means the efficiency of the former is higher than that of the latter; the flat-topped waveform can bear higher charging and discharging energy than the convex-topped one, and its ultimate muzzle velocity is also higher; among the three kinds of waveforms, the flat-topped waveform is the most propitious to the sliding performance of solid armatures because it can provide good contact of the solid armature and rail.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2012年第11期2763-2767,共5页 High Power Laser and Particle Beams
关键词 脉冲电流波形 固体电枢 导轨 滑行性能 电磁驱动 pulse current waveform solid armature rail sliding performance electromagnetic driving
  • 相关文献

参考文献10

  • 1Fair H D. Advances in electromagnetic launch science and technology and its applications[J]. IEEE Trans on Magn ,2009,45(1) :225 -230.
  • 2Crawford M, Subramanian R, Watt T, et al. The design and testing of a large-caliber railgun[J]. IEEE Trans on Magn, 2009,45(1) : 256 -260.
  • 3Li Mingtang, Yan Ping, Yuan Weiqun, et al. Experiment and computation on the initial contact force of the rails and C shaped solid arma ture interface[C]//Pro of 2010 IEEE International Power Modulator and High Voltage Conference. 2010:580 -582.
  • 4李敏堂,王亮,张大鹏,严萍,周媛.脉冲电流冲击力对电极间距的影响[J].强激光与粒子束,2012,24(1):243-247. 被引量:1
  • 5Li Mintang, Yan Ping, Yuan Weiqun, et al. Simulations on elastoplasticity of the monolithic aluminum armature under the contact force[J]. IEEE Trans on Plasma Sci ,2011,39(1) :426-430.
  • 6周媛,严萍,孙鹞鸿,袁伟群.脉冲成形网络参数对轨道型电磁驱动系统效率的影响[J].强激光与粒子束,2010,22(3):534-538. 被引量:6
  • 7Schneider M, Schneider R. Measurement of the current distribution between multiple brush armatures during launch[J]. IEEE Trans on Magn ,2009,45(1) :436-441.
  • 8McNab I R. Progress on hypervelocity railgun research for launch to spaee[J]. IEEETrans on Magn,2009,45(1):381-388.
  • 9SatapathyS, Vanicek H. Down-slope contact transition in railguns[J]. IEEETrans on Magn, 2007,43(1) :402-407.
  • 10埃斯特里·马歇尔·理查德,王莹.电磁轨道炮的科学与技术[M].北京:兵器工业出版社,2006:23-31.

二级参考文献18

  • 1Spahn E, Buderer G, Wenning W. A compact pulse forming network, based on semiconducting switches, for electric gun applications[J]. IEEE Trans Magn, 1999, 35(1) :378-382.
  • 2Marshall R A. Distributed energy store railgun: the limiting case[J]. IEEE Trans Magn, 1981, 27(1) :136-138.
  • 3Maas B L, Bauer D P, Marshall R A. Distributed energy store powered railguns for hypervelocity launch[J].IEEE Trans Magn, 1993, 29 (1):461-466.
  • 4Matyac M J, Christopher F, Jamison K A, et al. Railgun performance enhancement {rom distribution of energy feeds[J]. IEEE Trans Magn, 1995, 31(1) :332-337.
  • 5Marshall R A. The distributed energy store railgun, its efficiency, and its energy store implications[J]. IEEE Trans Magn, 1997, 33(1) : 582-588.
  • 6Spahn E, Buderer G, Ramezani E. High voltage thyrisistor switch for pulse power applications[C]//5th European Symposium on Electromagnetic Launch Technology. 1995:61-64.
  • 7埃斯特里·马歇尔·理查德,王莹.电磁轨道炮的科学与技术[M].北京:兵器工业出版社,2006:23-31.
  • 8Keshtkax A. Effect of rail dimension on current distribution and inductance gradient[J]. IEEE Trans on Magn, 2005, 41(1) :383-386.
  • 9Zhou Yuan, Yan Ping, Sun Yaohong, et al. Current distribution and inductance gradient calculation at different rail geometric parameters [C]//PPC2009 17th IEEE International Pulsed Power Conference. 2009:1290-1293.
  • 10Yuan Weiqun, Yan Ping, Sun Yaohong, et al. Design and testing of a two-turn electromagnetic launcher[J]. IEEE Trans on Plasma Science, 2011, 39(1):198-202.

共引文献9

同被引文献61

  • 1肖金石,刘文化,张世英,张金华.超宽带电磁脉冲对腔体孔缝耦合效应的数值模拟[J].强激光与粒子束,2010,22(12):2959-2963. 被引量:12
  • 2张朝伟,李治源,陈风波,姜国臣,程树康.感应线圈炮的电枢受力分析[J].高电压技术,2005,31(12):32-34. 被引量:24
  • 3Xu W D, Yuan W Q, Sun Y H, et al. Research on the sliding electrical contact of the rapid fire railgun[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1542-1546.
  • 4Keshtkar A, Mozaffari S, Keshtkar A. Inductance gradient variation with time and armature sliding along the rails[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 75-79.
  • 5Chen L X, He J J, Xia S G, et al. Influence of rail resistivity and rail height on armature edge erosion at current ramp-up[C]//2012 16t:In- temational Symposium on Electromagnetic Launch Technology. Beijing, China: IEEE, 2012: 1-4.
  • 6Hildenbrand D J, Rapka J R, Long B J. Computer modeling and pre- diction of solid armature contact wear and transitioning in electromagnetic guns[J]. IEEE Transactions on Magnetics, 1997, 33(1) 74-79.
  • 7Barber J P. Contact current carrying limits[C]//1989 Proceedings of the 35t: Meeting of the IEEE Holm Conference on Electrical Contacts. Chicago, USA: IEEE, 1989: 19-23.
  • 8Marshall R A. Current carrying capacity of solid armatures for railguns at zero speed[J]. IEEE Transactions on Magnetics, 1997, 33(1): 125-128.
  • 9Xia S G, Chen L X, Xiao Z, et al. Effects of contact pressure concen- trations in rail/armature surface at startup of a railgun launch[C]// 2012 16th International Symposium on Electromagnetic Launch Tech- nology. Beijing, China: IEEE, 2012: 1-5.
  • 10Hsieh K-T, Satapathy S, Hsieh M-T. Effects of pressure-dependent contact resistivity on contact interfacial conditions[J]. IEEE Transac- tions on Magnetics, 2009, 45(1): 313-318.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部