期刊文献+

基于神经网络和D-S证据理论的信息融合故障诊断方法 被引量:7

Fault Diagnosis Method of Data Fusion based on Neural Network and D-S Evidence Theory
下载PDF
导出
摘要 为了解决齿轮传动系统检测难度大、准确性不高和多点测试时信息处理复杂的问题,提取振动信号统计量特征参数、利用神经网络技术与D-S(Dempster-Shafert)证据理论相结合的信息融合故障诊断方法,实现了数据级、特征级与决策级的多级融合诊断。实验结果表明,将信息融合方法用于齿轮传动系统故障诊断,有助于综合利用故障信息,提高了故障诊断的准确性和可信度。 Aiming to resolve the problems of test difficulty,low accuracy and complex information processing lay in gearbox fault diagnosis,vibration signal feature parameter is extracted,neural network and D-S evidence theory are combined to accomplish multi level data fusion diagnosis.Experiment result indicates that the data fusion method using in gear transmission system fault diagnosis can improve the accuracy and reliability of fault diagnosis.
出处 《机械传动》 CSCD 北大核心 2012年第10期90-93,共4页 Journal of Mechanical Transmission
关键词 齿轮 故障诊断 信息融合 神经网络 D-S证据理论 Gearbox Fault diagnosis Data fusion Neural network D-S evidence theory
  • 相关文献

参考文献14

二级参考文献62

共引文献128

同被引文献46

  • 1巩建闽,王国胜,萧蓓蕾.保持分类能力不变的一种连续属性离散化方法[J].曲阜师范大学学报(自然科学版),2005,31(1):95-99. 被引量:2
  • 2张彩,张宝.应用D-S证据理论进行锅炉空气预热器在线故障分析[J].锅炉技术,2006,37(5):23-27. 被引量:5
  • 3张克南,陈一军,谢里阳,万年红,马天伟,章海,朱跃跃.电机电流分析法在机床类设备诊断中的应用研究[J].机床与液压,2007,35(3):196-198. 被引量:13
  • 4韩力群.人工神经网络理论、设计与应用[M].北京:化学工业出版社,2007:106-109.
  • 5庞丽君.金属切削原理[M].北京:国防工业出版社,2011.
  • 6Rosenstein M, Collins J, Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets [ J]. Physica D, 2003,65 (5) : 117 - 134.
  • 7Logan D, Mathew J. Using the correlation dimension for vibration fault di- agnosis of roiling element bearing - basic concepts[ J]. Mechanical Systems and signal Processing,2006,10(3) :241 - 250.
  • 8Eftekharnejad B, CarrascoMR, Charnley B, et al. The application of spec- tral kurtosis on Acoustic Emission and vibrations from a defective bearing [ J. Mechanical Systems and Signal Processing, 2011,25 ( 1 ) : 266 - 284.
  • 9Pawlak Z. Rough sets[J]. Computer and Information Science, 1982, 11 (2) : 341 - 356.
  • 10Li Ning, Zhou Rui, Hu Qinghua, et al. Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine [ J ]. Mechanical systems and signal processing, 2012,28(SI) :608 - 621.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部