期刊文献+

基于协同神经网络的网络流量异常检测 被引量:3

Network traffic anomaly detection based on synergetic neural network
下载PDF
导出
摘要 针对网络流量具有复杂的动力学特性,提出了一种应用自上而下的协同神经网络进行网络流量异常检测的方法.首先选择包含正常网络流量和异常攻击流量的数据集作为原型模式,然后通过协同神经网络进行序参量的动力演化,最终根据原型模式对应的序参量的演化结果来判定检测结果.实验结果证明,该方法能有效的识别出正常流量和异常攻击的种类. For network traffic with complex dynamics characteristic, a method is proposed for network traffic anomaly detection, which based on a top-down synergetic neural network. First select the datasets that contain normal network traffic and abnormal attack traffic as a prototype pattern, and then calculate order parameter by synergetic neural network. Finally the detection result is obtained according to the evolution result of the order parameter corresponding to the prototype pattern in the end. Experimental results show that this method can effectively identify normal traffic and types of abnormal attacks.
作者 马卫 熊伟
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期537-539,568,共4页 Journal of Central China Normal University:Natural Sciences
基金 中南民族大学校级基金项目(YZQ09006)
关键词 网络流量 异常检测 协同神经网络 序参量 network traffic anomaly detection synergetic neural network order parameter
  • 相关文献

参考文献8

  • 1Dickerson J E,Justin J, Koukousoula O, et al. Fuzzy intrusion detection[-A. IFSA World Congress and 20th NAFIPS Inter-national Conference E C]. Vancouver, BC: IEEE, 2001, 1506-1510.
  • 2Sang A, Li S. A predictability analysis of network traffic [J]. Computer Networks, 2002, 39(4): 329-345.
  • 3吕军,李星.一种网络流量异常检测算法[J].计算机应用研究,2006,23(11):217-219. 被引量:12
  • 4Hanken H. Synergetic Computers and Cognition A Top- Down Approach to Neural Nets[M]. Berlin= Springer-Ver lag, 1991.
  • 5HakenH.协同计算机和认知一神经网络自上而下方法[M].杨家本译.北京:清华大学出版社,1994.
  • 6陈永强,胡汉平,李新天.基于协同神经网络的图像数字水印算法[J].中国图象图形学报,2005,10(7):894-899. 被引量:5
  • 7Lippmann R, Haines J, Fried D, et al. The 1999 DARPA off-line intrusion detection evaluation [J]. Computer Net- works, 2000, 34(4): 579 595.
  • 8熊伟,胡汉平,王祖喜,杨越.基于突变级数的网络流量异常检测[J].华中科技大学学报(自然科学版),2011,39(1):28-31. 被引量:11

二级参考文献27

  • 1王欣,方滨兴.Hurst参数变化在网络流量异常检测中的应用[J].哈尔滨工业大学学报,2005,37(8):1046-1049. 被引量:14
  • 2Sang A, Li S. A predictability analysis of network traffic[J]. Computer Networks, 2002, 39(4): 329- 345.
  • 3Magnaghi A, Hamada T, Katsuyama T. A wavelet- based framework for proactive detection of network misconfigurations[C]//ACM SIGCOMM' 04 Workshops. Oregon.. ACM Press, 2004: 253- 258.
  • 4Paschalidis I, Smaragdakis G. Spatio-temporal net work anomaly detection by assessing deviations of empirical measures[J]. IEEE/ACM Trans Networking, 2009, 17(3): 685-697.
  • 5Li Yaoting. Chaos and Lyapunov characteristic exponents[J]. Physics, 1995, 25(2): 282-288.
  • 6Thorn R. Stabilite structurelie at morphoge [M]. New York: Benjamin Addison-Wesley, 1975.
  • 7Thottan M, Ji C. Statistic detection of enterprise network problem[J]. Journal of Network and System Management, 1999, 7(1): 27-45.
  • 8Lippmann R, Haines J, Fried D, et al. The 1999 DARPA off-line intrusion detection evaluation[J]. Computer Networks, 2000, 34(4): 579-595.
  • 9CoxIJ MillerML BloomJA.数字水印[M].北京:电子工业出版社,2003..
  • 10Cox I J, Kilian J, Leighton F T, et al. A secure robust watermark for multimedia[ A]. In: Proceedings of the First International Workshop on Information Hiding[ C ] , Cambridge, UK, 1996:185 ~ 206.

共引文献25

同被引文献23

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部