期刊文献+

温度对微生物燃料电池电化学性能的影响 被引量:4

INFLUENCE OF TEMPERATURE ON THE BEHAVIOR OF MICROBIAL FUEL CELLS
下载PDF
导出
摘要 分别在20℃,37℃和45℃三个温度条件下以间歇方式运行大肠杆菌生物燃料电池(MFC),研究功率密度、电极电势、电化学阻抗等电化学性质随温度的变化规律.结果表明:温度从20℃提高到37℃,最大功率密度从53.35mW/m2(275mA/m2)增加到610.5mW/m2(2 775mA/m2),增长了10.5倍;同时阳极电极电势降低;且阳极电化学阻抗由741.9Ω降低到42.4Ω.在一定温度范围内,升高温度不仅能提高电池功率输出,而且能增强其电化学活性.但是,太高的温度反而不利于生物燃料电池的运行.45℃时的最大功率密度只有171mW/m2(600mA/m2),比37℃时最大功率610.5mW/m2(2 775mA/m2)减少72%;同时阳极电化学阻抗由42.4Ω增加到416.1Ω.大肠杆菌生物燃料电池在37℃时具有最佳的电化学性能.可见,温度在生物燃料电池运行中是一个非常重要的操作参数. The microbial fuel cells(MFCs) were tested in batch mode at different tempera- tures of 20 ℃, 37 ℃, 45 ℃. Power density, electrode potential, electrochemical impedance were examined as a function of temperature. The temperature increased from 20 ℃ to 37 ℃, the peak power density enhanced by over 10.5 times from 53.35 mW/m2 (275 mA/m2) to 610.5 mW/m2 (2 775 mA/m2). In the temperature range between 20 ℃ to 37 ℃, the anode potential gradually decreased, while the anode polarization resistance decreased from 741. 9 12 to 42.4 12Ω; elevated temperatures not only enhanced the power output, they also influenced the bioelectrocatalytic performance of MFCs. MFCs grown at elevated temperatures were more electrochemically active than those at lower temperature. But too high operation temperature was disadvantageous to the perform of MFC. At the temperature of 45 ℃, the peak power density was just 171 mW/m2 (600 mA/m2), which was far lower than 610.5 mW/m2 at temperature of 37 ℃ ;while anode polariza- tion resistance increased from 42.4 12 to 416.1 12. At 37 ℃, MFC displayed an optimum electrical chemistry performance. From the data, we proposed that the temperature was a crucial opera- tional parameter in the yield of MFCs.
出处 《煤炭转化》 CAS CSCD 北大核心 2012年第4期89-93,共5页 Coal Conversion
基金 国家自然科学基金资助项目(20776091 21176168)
关键词 微生物燃料电池 温度 电化学性能 microbial fuel cell, temperature, electrochemical behavior
  • 相关文献

参考文献13

  • 1Bond D R, Holmes D E,Tender L M et al. Electrode-reducing Microorganisms That Harvest Energy from Marine Sediments [J]. Science, 2002,295 : 483-485.
  • 2Ratledge C, Kristiansen B. Basic Biotechnology[M]. Third Edit. Cambridge UK : Cambridge University Press, 2006:66-69.
  • 3Scott K, Cotlareiuc J, Hall D. Power from Marine Sediment Fuel Cells:the Influence of Anode Material[J]. Appl Electrochem, 2008,38 : 1313-1319.
  • 4Hong S W,Chang I S,Choi Y S et al. Experimental Evaluation of Influential Factors for Electricity Harvesting from Sediment Using Microbial Fuel Cell[J]. Bioresour Technol,2009,100(12) :29-35.
  • 5Min B, Roman O B, Angelidaki I. Importance of Temperature and Anodic Medium Composition on Microbial Fuel CeII(MFC) Performance[J]. Biotechnol Lett, 2008,30 ( 7 ) : 1213-1218.
  • 6Jong B C, Kim B H, Chang I S et al. Enrichment, Performance and Microbial Diversity of Thermophilic Mediator-less Microbial Fuel CeI1[J]. Environ Sci Technol,2006,40(20) :6449-6454.
  • 7Kim J R, Premier G C, Hawkes F R et al. Modular Tubular Microbial Fuel Cells for Energy Recovery During Sucrose Wastewater Treatment at Low Organic Loading Rate[J]. Bioresource Technology, 2010,101 : 1190-1198.
  • 8Ramasamy R P,Ren Zhiyong,Mench M M. Impact of Initial Biofilm Growth on the Anode Impedance of Microbial Fuel Cells[J]. Biotechnology and Bioengineering,2008,101(1) :101-108.
  • 9Xiao Yongshun. Modelling Temperature-dependency in Biology by Generalizing Temperature Coefficient Q10[J]. Ecological Modelling, 2000,127 (2-3) : 283-290.
  • 10Aelterman P, Freguia S, Keller Jet al. The Anode Potential Regulates Bacterial Activity in Microbial Fuel Cells[J]. Biotech- nological Products and Process Engineering, 2008,78 : 409-418.

二级参考文献24

  • 1薛爱群,贾锋,齐顺章.细菌总蛋白含量测定方法的改进[J].微生物学通报,1994,21(1):58-59. 被引量:11
  • 2Min B,Logan B E.Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J].Environ Sci Technol,2004,38(21):5809-5814.
  • 3Logan B E,Murano C,Scott K,et al.Electricity generation from cysteine in a microbial fuel cell[J].Water Res,2005,39(4):942-952.
  • 4Liu H,Logan B E.Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J].Environ Sci Technol,2004,38 (14):4040-4046.
  • 5Kim J R,Min B,Logan B E.Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J].Appl Microbiol Biotechnol,2005,68:23-30.
  • 6Oh S E,Logan B E.Hydrogen and electricity production from a food proeessing wastewater using fermentation and microbial fuel cell technologies[J].Water Res,2005,39:4673-4682.
  • 7Liu H,Cheng S A,Logan B E.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J].Environ Sci Technol,2005,39 (2):658 -662.
  • 8Logan B E.Simultaneous wastewater treatment and biological electricity generation[J].Water Sci Technol,2005,52(1 -2):31 -37.
  • 9Oh S E,Min B,Logan B E.Cathode performance as a factor in electricity generation in microbial fuel cells[J].Environ Sci Technol,2004,38 (18):4900-4904.
  • 10Cheng S,Liu H,Logan B E.Increased performance of single-chamber microbial fuel cells using an improved cathode structure[J].Eleotrochem Commun,2006,8:489-494.

共引文献70

同被引文献68

  • 1罗帝洲,许玫英,杨永刚.微生物燃料电池串并联研究及应用[J].环境化学,2020,39(8):2227-2236. 被引量:6
  • 2尤世界,赵庆良,姜珺秋.废水同步生物处理与生物燃料电池发电研究[J].环境科学,2006,27(9):1786-1790. 被引量:53
  • 3黄霞,梁鹏,曹效鑫,范明志.无介体微生物燃料电池的研究进展[J].中国给水排水,2007,23(4):1-6. 被引量:46
  • 4杨冰,高海军,张自强.微生物燃料电池研究进展[J].生命科学仪器,2007,5(1):3-12. 被引量:23
  • 5国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法:4版[M].北京:中国环境科学出版社,2002:670.
  • 6徐云涛.能源发展与环境问题[J].能源环境保护,2007,21(4):9-11. 被引量:7
  • 7Kim J R,Min B,Logan B E. Evaluation of Procedures to Ac-climate a Microbial Fuel Cell for Electricity Production[J].Applied Microbiology and Biotechnology,2005,(1):23-30.
  • 8Nam J Y,Kim H W,Lim K H. Effects of Organic Load-ing Rates on the Continuous Electricity Generation From Fer-mented Wastewater Using a Single-chamber Microbial Fuel Cell[J].BIORESOURCE TECHNOLOGY,2010,(1):S33-S37.
  • 9Wang Y K,Sheng G P,Li W W. Development of a No-vel Bioelectrochemical Membrane Reactor for Wastewater Treatment[J].Environmental Science and Technology,2011,(21):9256-9261.
  • 10Lovley D R. The Microbe Electric:Conversion of Organic Matter to Electricity[J].Current Opinion in Biotechnology,2008,(16):546-571.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部