期刊文献+

基于局部自我相关函数光线照明变化下的人脸检测 被引量:4

Image normalization based on local autocorrelation and its application to face detection
原文传递
导出
摘要 针对照明变化条件下人脸图像检测精度相对较低的问题,以照明变化下的人脸检测为研究对象,提出局部自我相关函数(local autocorrelation,LAC),研究基于Adaboost算法下采用局部自我相关函数为前处理的光照变化下人脸检测。提出了局部自我相关函数定义模型,对局部自我相关函数的物理特性进行分析,从理论上验证局部自我相关函数对线性照明变化的鲁棒性。采用卡内基梅隆大学的人脸照明变化数据库(CMU PIE Database)作为检测数据验证基于局部自我相关函数的光线照明变化下的人脸检测,实验结果证明了局部自我相关函数消除照明变化对人脸检测精度影响的有效性。 Non-uniformity of luminance in images due to irregular lighting etc. could cause difficulties in various kinds of image processing in face detection. A normalization method was presented for recognizing human faces under varia- tion in lighting, which was called local autocorrelation (LAC) method. LAC method was applied to human face detec- tion based on Adaboost algorithm. The classification result of CMU PIE database for original and LAC images were compared with the LAC method. The physical properties of the LAC were analyzed, and the LAC robustness of linear changes in illumination was verified theoretically. Experimental results showed the number of weak classifiers could be reduced to a great extent, while preserving equal detection capability. The effectiveness of elimination of non-uniform illumination variation in images was verified in face detection experiment.
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第5期59-64,共6页 Journal of Shandong University(Engineering Science)
基金 江苏技术师范学院科研启动基金资助项目(KYY11048 KYY11049)
关键词 局部自我相关函数 照明变化 图像预处理 人脸检测 ADABOOST算法 local autocorrelation illumination variation image preprocessing face detection Adaboost algorithm
  • 相关文献

参考文献22

二级参考文献197

共引文献438

同被引文献46

  • 1高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032. 被引量:110
  • 2MAKOTO M,MASAHIDE Y,KATSUHIKO S.Extraction of human face and transformable region by facial expression based on extended labeled graph matching[J].Electronics and Communications in Japan,2013,87(10):35-43.
  • 3乔磊,李存华,仲兆满,等.基于规则的人物信息抽取算法的研究[J].南京师范大学学报(自然科学版),2012,35(4):134-139.
  • 4孔英会,张少明.多级FFD配准视频人脸超分辨率重建[J].光电丁程.2012,39(10):46-53.
  • 5WANG Z,XIAO N.Using MD-adaboost to enhance classifier of facial expression recognition[J].Journal of Computational Information Systems,2013,9(3):923-932.
  • 6MAKOTO M,YONEYAMA M,SHIRAI K.Extraction of human face and transformable region by facial expression based on extended labeled graph matching[J].Electronics and Communications in Japan,2012,87(10):35-43.
  • 7WANG L,HE L,MISHRA A,et al.Active contours driven by local Gaussian distribution fitting energy[J].Signal Processing,2009,89(12):2435-2447.
  • 8MATTHEW B.Modeling regional dynamics of human-rangifer systems: a framework for comparative analysis[J].Ecology and Society,2013,18(4):43.
  • 9WU Y,YU T.A field model for human detection and tracking[J].IEEE Trans PAMI,2006,28(5):753-765.
  • 10GORELICK L,BLANK M,SHECHTMAN E,et al.Actions as space-time shapes[J].IEEE Trans PAMI,2007,29(12):2247-2253.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部