期刊文献+

基于改进对偶分解的智能电网快速实时定价方法 被引量:13

Fast real-time pricing method based on improved dual decomposition for smart grid
下载PDF
导出
摘要 实时电价是需求侧管理策略的重要手段,是解决智能电网供需平衡的理想需求响应机制,能起到削峰填谷的作用。为此,为智能电网设计了一种分布式实时电价算法:基于改进对偶分解的近端中心算法,求解用户总效用与电能供应商成本之差最大的优化问题。在此算法中,对偶问题的拉格朗日乘子即为实时电价,通过迭代更新拉格朗日乘子,形成电能供应商的实时电价与用户的实时能耗水平之间的互动,算法最终为每个用户找到最优的能耗水平(即用户的总效用最大化),同时使得电能供应商的成本最小化。所提算法既保留了问题的可分离性,又加快了收敛速度,克服了基于对偶分解的次梯度法求解该优化问题在用户规模较大时收敛慢甚至不收敛的缺点。仿真结果充分表明了所提算法具有快速收敛的特性。 Real-time pricing scheme is an important means of demand side management strategies and is an ideal demand response mechanism to achieve the supply and demand balance in smart grid. It can bring out peak clipping and valley filling. Thus, we propose a distributed real-time 'pricing algorithm for the smart grid, that is, proximal center algorithm based on an improved dual decomposition, which can solve the optimization problem that maximizes the difference between the utilities of all users' and the cost of the energy provider. In the algorithm, Lagrangian multiplier of the dual problem is the energy price. Through updating the real-time pricing the interactions are activated between real-time pricing of the energy provider and real-time energy consumption of users. The algorithm finds the optimal energy consumption levels for each user (the maximization of the users' utilities), and meanwhile the minimum of the cost for the energy provider. It not only preserves the separability of the problem but also accelerates the convergence rate. When the network system is large, this algorithm overcomes the weakness of the subgradient algorithm based on dual decomposition, which is convergent slowly or even not. The simulation results testify the quality of fast convergence for the proposed algorithm.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2012年第21期42-47,共6页 Power System Protection and Control
基金 国家自然科学基金资助项目(60702081 61002016) 教育部科学技术研究重点项目(212066) 浙江省自然科学基金资助项目(LY12F02042) 浙江省留学人员科技活动择优资助项目~~
关键词 智能电网 需求侧管理 削峰填谷 实时定价 次梯度算法 近端中心算法 smart grid demand side management peak clipping and valley filling real-time pricing subgradient algorithm proximal center algorithm
  • 相关文献

参考文献18

  • 1陈上吉.浅谈智能电网下需求侧管理[J].华中电力,2011,24(3):5-7. 被引量:5
  • 2雷霞,刘俊勇,党晓强.配电市场购售电优化模型研究综述[J].电力系统保护与控制,2010,38(2):136-145. 被引量:13
  • 3Samadi P,Mohsenlan-rad A,Schober R, et al. Optimalreal-time pricing algorithm based on utility maximizationfor smart grid[C]// 2010 first IEEE InternationalConference on Smart Grid Communications, 2010,Gaithersburg, MD: 415-420.
  • 4李天友,徐丙垠.智能配电网自愈功能与评价指标[J].电力系统保护与控制,2010,38(22):105-108. 被引量:61
  • 5周明华,徐敏.基于最优潮流的实时电价及其算法的研究[J].继电器,2006,34(21):63-67. 被引量:8
  • 6Conejo A J, Morales J M,Baringo L. Real-time demandresponse model [J].IEEE Transactions on Smart Grid,2010,1(3): 236-242.
  • 7Mohsenian-rad A H, Wong V W S, Jatskevich J, et al.Optimal and autonomous incentive-based energyconsumption scheduling algorithm for smart grid[C]//Innovation Smart Grid Technologies, January 19-2, 2010,Gaithersburg: 1-6.
  • 8Mohsenian-rad A H,Leon-tarcia A. Optimal residentialload control with price prediction in real-time electricitypricing environmentsfJ].IEEE Transactions on SmartGrid, 2010,1(2): 120-133.
  • 9ZHANG Fan. Distributed demand response and useradaptation in smart grids[EB/OL].http://adsabs.harvard.edu/abs/2010arXiv!007.5425F.
  • 10牟龙华,朱国锋,朱吉然.基于智能电网的智能用户端设计[J].电力系统保护与控制,2010,38(21):53-56. 被引量:63

二级参考文献130

共引文献144

同被引文献141

引证文献13

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部