期刊文献+

一种针对于描述子的SIFT简化方法 被引量:17

Simplified SIFT algorithm based on descriptor
下载PDF
导出
摘要 由于目前的SIFT(scale invariant feature transform)特征提取算法具有较高的时间复杂度,不利于大规模的数据存储和搜索,提出一种简化的SIFT局部图像特征提取算法。改进的SIFT算法针对于描述子生成部分进行简化,将原算法中特征点描述子的矩形区域改为圆形区域,并将RANSAC(random sample consensus)算法应用于SIFT特征匹配中,有效地剔除错误匹配点。采用K.Mikolajczyk的衡量方法,即查全率和错误率进行评估。实验结果显示,算法在旋转、光照、视角变化等情况下都有很好的匹配效果,并且降低了时间复杂度。 As current scale invariant feature transform (SIFT)feature extraction algorithm has high time complexity, it is not conducive to large-scale data storage and search. A simplified SIFT local image feature extraction algorithm is proposed. The simplified SIFT algorithm changes the rectangular area of the descriptor in original algorithm into sub- circular area, and random sample consensus (RANSAC) algorithm is applied to SIFT feature matching. RANSAC al- gorithm can effective eliminate the errors in matching. This paper uses the measurement method of K. Mikolajczyk, which uses the recall ratio and error rate to carry out evaluation. Experiment results show that the new algorithm is invariant for rotation, light, perspective changes, and also reduces the time complexity.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第10期2255-2262,共8页 Chinese Journal of Scientific Instrument
基金 高等学校博士学科点专项科研基金(20050183032) 吉林省教育厅科学基金(2009604)资助项目
关键词 SIFT(scale INVARIANT feature transform) 视觉不变量 RANSAC(random SAMPLE consensus) scale invariant feature transform(SIFT) vision invariant random sample consensus(RANSAC)
  • 相关文献

参考文献12

  • 1WEISS I. Projective invariants of shapes [ J ]. Proceed- ings of DARPA Image Under- standing Workshop, 2001 (2) : 1125 -1134.
  • 2LOWED G. Object recognition from local scale-invariant features [ C ]. International Conference on Computer Vi- sion, Corfu, Greece, 1999 (9) : 1150-1157.
  • 3LOWED G. Distinctive image features from scale- invari- ant keypoints [ C ]. International Journal of Computer Vi- sion, 2004,60,(2) :91-110.
  • 4李志华,陈耀武.基于多摄像头的目标连续跟踪[J].电子测量与仪器学报,2009,23(2):46-51. 被引量:21
  • 5刘兆庆,李琼,刘景瑞,彭喜元.一种基于SIFT的图像哈希算法[J].仪器仪表学报,2011,32(9):2024-2028. 被引量:15
  • 6TONY L. Scale-space theory: A basic tool for analyzing structures at different scales [ J ]. Journal of Applied Sta- tistics, 1994, 21 (2) :224-270.
  • 7傅卫平,秦川,刘佳,杨世强,王雯.基于SIFT算法的图像目标匹配与定位[J].仪器仪表学报,2011,32(1):163-169. 被引量:122
  • 8FISCHLER M, BOLLES R. Random sample consensus: A paradigm for model fitting with applications to image analysisand automated cartography [ J ]. Communications of the ACM, 1981,24:381-385.
  • 9赵录刚,吴成柯.基于随机抽样一致性的多平面区域检测算法[J].计算机应用,2008,28(S2):154-157. 被引量:6
  • 10HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[ M]. Cambridge UK: Cambridge Uni- versity Press, 2003.

二级参考文献67

  • 1贾涛,陈涛,杨润奎.基于仿射不变量的长基线立体匹配[J].仪器仪表学报,2005,26(z1):623-624. 被引量:2
  • 2罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 3丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 4STAUFFER C, GRIMSON W. Learning patterns of acitivty using real-time tracking[J]. IEEE Trans on PAMI, 2000,22(8): 747-757.
  • 5TAO H,SAWHNEY H, KUMAR R. Object tracking with bayesian estimation of dynamic layer representations[J]. IEEE Trans on PAMI, 2002,24 (1) : 75-89.
  • 6COLLINS R, FUJIYOSHI A, KANADE T. Algorithms for cooperative multisensor surveillance[C]// Proceedings of the IEEE. (Supp. 1) : IEEE, 2001,89 (10):1456-1477.
  • 7KANADE T, COLLINS R, LIPTON A, et al. Advances in cooperative multi-sensor video surveillance [C]// Proceedings of DARPA Image Understanding Workshop. Monterey: (Supp. 1), 1998,1:3-24.
  • 8CHANG T S, GONG S G. Tracking multiple people with a multi-camera system[C]//Proceedings of IEEE Workshop on Multi-Object Tracking. Washington.. IEEE, 2001: 19.
  • 9UTSUMI A, OHYA J. Multiple-camera-based human tracking using non-synchronous observations [C]// Proceedings of 4th ACCV. Taipei: IEEE, 2000: 1034- 1039.
  • 10KELLY P, KATKERE A, KURAMURA D, et al. An architecture for multiple perspective interactive video [C]// Proceedings of the third ACM international conference on Multimedia. New York: ACM, 1995: 201-212.

共引文献163

同被引文献169

  • 1LI Chang-chun1, ZHANG Guang-sheng1, LEI Tian-jie2, 3, GONG A-du2, 3 1. School of Surveying & Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China,2. Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China,3. Ministry of Civil Affairs/Ministry of Education of China Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China.Quick image-processing method of UAV without control points data in earthquake disaster area[J].中国有色金属学会会刊:英文版,2011,21(S3):523-528. 被引量:15
  • 2赵录刚,吴成柯.基于随机抽样一致性的多平面区域检测算法[J].计算机应用,2008,28(S2):154-157. 被引量:6
  • 3FITZGIBBON A, COOK M, SHARP T, et al. Real- time human pose recognition in parts from single depth images [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011: 1297-1304.
  • 4ZLATEVA N, MARINOV A, REYES M, et al. Graph cuts optimization for multi-limb human segmentation in depth Maps[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012:726-732.
  • 5GULSHAN V, LEMPITSKY V, ZISSERMAN A. Humanising grabcut: learning to segment humans using the Kinect[C]. IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011 : 1127-1133.
  • 6BAI X, WANG J, SIMONS D, et al. Video snapcut: robust video object cutout using localized classifiers[C]. SIGGRAPH '09 ACM SIGGRAPH 2009 papers,2009.
  • 7BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robust features[J]. Computer Vision and Image Understanding (CVIU), 2008, 3951 (3): 404-417.
  • 8ROTHER C, KOLMOGOROV V, BLAKE A. " Grabcut"-interactive foreground extraction using iterated graph cuts [J]. In Proceedings of ACM SIGGRAPH, 2004,23 (3) : 309-314.
  • 9BAY H, TUYTELAARS T, VAN G L. SURF: speeded up robust features [C]. European Conference on Computer Vision, 2006 : 404417.
  • 10VIGO D A R, KHAN F S, VAN D W J, et al. The impact of color on bag-of-words based object recognition [ C ]. International Conference on Pattern Recognition, 2010 : 1549-1553.

引证文献17

二级引证文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部