摘要
Eu3+ and Ce3+ co-doped YPO4 microspheres were synthesized by hydrothermal method without template. The emission spectra showed that the red emission centered at 618nm could be readily increased relatively to the orange emission centered at 590nm by controlling the doping concentration of Ce3+ ion. The investigation based on excitation spectra and decay curves demonstrated that the doped Ce3+ ions took two efficient energy transfers to Eu3+ ions and affected the lifetime of the emission states of Eu3+ ions so that the emission spectra of Eu3+ ion were accordingly tuned with the Ce3+ content increasing. This controllable red (5D0→7F2) to orange ( 5D0→7F1) emission ratio of YPO4:Eu3+,Ce3+ made it very promising for encoded anti-fake labels and bio-labels.
Eu3+ and Ce3+ co-doped YPO4 microspheres were synthesized by hydrothermal method without template. The emission spectra showed that the red emission centered at 618nm could be readily increased relatively to the orange emission centered at 590nm by controlling the doping concentration of Ce3+ ion. The investigation based on excitation spectra and decay curves demonstrated that the doped Ce3+ ions took two efficient energy transfers to Eu3+ ions and affected the lifetime of the emission states of Eu3+ ions so that the emission spectra of Eu3+ ion were accordingly tuned with the Ce3+ content increasing. This controllable red (5D0→7F2) to orange ( 5D0→7F1) emission ratio of YPO4:Eu3+,Ce3+ made it very promising for encoded anti-fake labels and bio-labels.
基金
Project supported by National Natural Science Foundation of China(51175172)
Natural Science Foundation of Hunan Province(10JJ6008)
the Innovation Foundation of Hunan University of Science and Technology(S100126)