期刊文献+

一种基于引用上下文和引文网络的相关反馈算法 被引量:3

A Relevance Feedback Algorithm Based on Citation Context and Citation Network
下载PDF
导出
摘要 相关反馈是一种根据用户或系统的相关性判断重构初始检索提问的方法,已被证明可以有效地改进检索效果。具体到学术文献,其引用关系表征了文献内容上的相关性,因而可以为相关反馈提供有价值的辅助信息。本文提出了一种基于引用上下文、文献同被引和文献耦合的相关反馈改进算法。该算法的基本思想包括:利用学术文献的引用上下文信息扩充词包模型(bags of words)进行文本表示;在相关文献判断阶段利用相关文献在引文网络中与其他文献的同被引强度和耦合强度扩充相关文献集合;结合基于聚类的相关反馈思想抽取查询扩展项。实验证明该算法提高了相关反馈效果。此外,相关分析的结果表明文献同被引以及文献耦合强度与文献内容相似度具有显著的相关性。 Relevance feedback is a method for refactoring retrieval query according to the relevance judgment by system or user. It is proved to improve retrieval result effectively. And for the information retrieval on academic literature, the reference relationship characterizes the correlation on content, so the reference relationship can provide supplementary information in relevance feedback. In this paper, a novel relevance feedback algorithm based on citation context, co- citation and bibliographic coupling is proposed. A citation context is the text surrounding the reference markers used to refer to other scientific works. The citation context can provide additive terms to represent the academic literature, this algorithm use citation context to expand the "bags of words" model. In the stage of relevance judgment, we use the relation of co- citation and bibliographic coupling in citation network to expand the set of relevance document. Finally, the algorithm uses the clustering method to extract terms to expand query in relevance document. Experimental results show that the retrieval quality is improved. In addition, we investigate the correlation of co-citation,bibliographic coupling and literature content by correlation analysis in statistics.
出处 《情报学报》 CSSCI 北大核心 2012年第10期1052-1061,共10页 Journal of the China Society for Scientific and Technical Information
基金 国家社科基金项目“中文学术信息检索系统相关性集成研究”(项目批准号10CTQ027)、教育部人文社会科学研究规划基金项目“面向用户的相关性标准及其应用研究”(项目批准号07JA870006)及中国科学技术信息研究所合作研究项目的资助
关键词 相关反馈 引用上下文 同被引 文献耦合 聚类 relevance feedback, citation context, co-citation, bibliographic coupling, clustering
  • 相关文献

参考文献37

  • 1宋玲丽,成颖,单启成.信息检索系统中的相关反馈技术[J].情报学报,2005,24(1):34-41. 被引量:7
  • 2邱均平.论“引文耦合”与“同被引”[J].图书馆,1987(3):13-19. 被引量:24
  • 3Rocchio J. Relevance Feedback In Information Retrieval. The SMART Retrieval System. Englewood Cliffs:Prentice- H all, Inc, 1971 : 313-323.
  • 4Buckley C, Mitray M, Walz J, et al. Using Clustering and SuperConcepts Within SMART : TREC6 [ J ]. Information Processing & Management,2000,36( 1 ) : 109-131.
  • 5Iwayama M. Relevance Feedback with a Small Number of Relevance Judgements: Incremental Relevance Feedback vs. Document Clustering [ C]// Proceedings of the 23rd annual international ACM SIGIR conference on research and development in information retrieval. USA, New York ,2000 : 10-16.
  • 6Choi J, Kim M, Raghavan V V. Adaptive Feedback Me- thods in an Extended Boolean Model[ C ]//Proceedings of ACM SIGIR workshop on mathematical/formal methods in information retrieval, 2001 : 42-49.
  • 7Choi J,Kim M, Raghavan V V. Adaptive relevance feed- back method of extended boolean model using hierarchical clustering techniques [ J ]. Information Processing and Management, 2006,42 : 331-349.
  • 8Salton G,Fox E A, Voorhees E M. Advanced feedback me- thods in information retrieval[ J]. Journal of the American Society for Information Science, 1985,36 ( 3 ) :200-210.
  • 9Lee K S, Croft W B, Allan J. A Cluster-Based Resamp- ling Method for Pseudo-Relevance Feedback [ C ]// Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval. USA, New York ,2008:235-242.
  • 10钟敏娟,万常选,焦贤沛.基于聚类和词组抽取的XML查询扩展[J].情报学报,2010,29(4):597-604. 被引量:2

二级参考文献150

共引文献68

同被引文献49

  • 1刘林青.范式可视化与共被引分析:以战略管理研究领域为例[J].情报学报,2005,24(1):20-25. 被引量:40
  • 2王建芳,冷伏海.共引分析理论与实践进展[J].中国图书馆学报,2006,32(1):85-88. 被引量:49
  • 3耿海英,肖仙桃.国外共引分析研究进展及发展趋势[J].情报杂志,2006,25(12):68-69. 被引量:25
  • 4薛薇.统计分析与SPSS的应用[M].北京:中国人民大学出版社,2008.
  • 5Small H. Co-citation in the Scientific Literature:A New Measure of the Relationship between Two Documents[J].{H}JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY,1973,(4):265-269.
  • 6Marshakova I V. System of Document Connections Based on References[J].Scientific and Technical Information Serial of VINITI,1973,(2):3-8.
  • 7White H D,Griffith B C. Author Cocitation:A Literature Measure of Intellectual Structure[J].{H}Journal of the American Society for Information Science,1981,(3):163-171.
  • 8Chen C. Searching for Intellectual Turning Points:Progressive Knowledge Domain Visualization[J].{H}Proceedings of the National Academy of Sciences(USA),2004,(Suppl 1):5303-5310.
  • 9Chen C. CiteSpace II:Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature[J].{H}JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY,2006,(3):359-376.
  • 10Chen C,Song I-Y,Yuan X. The Thematic and Citation Landscape of Data and Knowledge Engineering(1985-2007)[J].{H}Data & Knowledge Engineering,2008,(2):234-259.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部