期刊文献+

一类三阶三点边值问题正解的存在性和不存在性 被引量:3

Existence and nonexistence of positive solutions for a third-order three-point boundary value problem
原文传递
导出
摘要 运用上下解方法及不动点指数理论,在非齐次边界条件下讨论了三阶三点边值问题u″′(t)+a(t)f(u(t))=0,t∈(0,1),u(0)=λ1,u'(0)=λ2,u'(1)-αu'(η)=λ3正解的存在性和不存在性,并且给出了该问题至少存在一个正解,两个正解及无正解时参数(λ1,λ2,λ3)的最优取值范围。其中(λ1,λ2,λ3)∈R3+\{(0,0,0)}为参数,η∈(0,1),α∈0,1[)η为常数,a∈C((0,1),[0,+∞)),f∈C([0,+∞),[0,+∞))。 By using the lower and upper solutions method and fixed point index theory, we study the existence and non- existence of positive solutions of nonhomogeneous boundary value problem u″′(t)+a(t)f(t))=0,t∈(0,1), u(0)=λ1,u′(0)=λ2,u′(1)-au′(η)=λ3 and given the optimal regions of (λ1,λ2,λ3) when the above problem at least exist one positive solution, two positive solutions and no positive solution, respectively. Where (λ1,λ2,λ3) ∈R3*/|0,0,0)| tare parameters, η∈(0,1),α∈[0,1/η)are constants,α∈С((0,1),[0,+∞)),f∈С([0,+∞),[0,+∞)).
作者 杨春风
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第10期109-115,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11061030)
关键词 正解 存在性 多解性 上下解方法 不动点指数 positive solutions existence multiplicity lower and upper solutions fixed point index
  • 相关文献

参考文献12

  • 1BOUCHERIF A, AL-MALKI N. Nonliear three-point third-order boundary value problem[ J ]. Applied Mathematics and Com- putation, 2007, 190 ( 2 ) : 1168-1177.
  • 2GRAEF J R, WEBB J R L. Third order boundary value problem with nonlocal boundary conditions[J]. Nonlinear Analysis, 2009, 71 (5-6) : 1542-1551.
  • 3LI Yongxiang. Positive periodic solutions for fully third-order ordinary differential equation [J]. Computers & Mathematics with Applications, 2010, 59 ( 11 ) : 3464-3471.
  • 4GUO Li, SUN Jianping, ZHAO Yahong. Existence of positive solutions for nonliear third-order three-point boundary value problem[J]. Nonlinear Analysis, 2008, 68(10):3151-3158.
  • 5FENG Yuqiang. Existence and uniqueness results for a third-order implicit differential equation[J]. Computers & Mathematics with Applications, 2008, 56(10) :2507-2514.
  • 6SUN Yongping. Positive solutions for third-order three-point nonhomogeneous boundary value problems [ J ]. Applied Mathe- matics Letters, 2009, 22( 1 ):45-51.
  • 7ZHANG Zhongxin, WANG Junyu. Positive solutions to a second-order three-point boundary value problem [ J ]. Journal of Mathematical Analysis and Applications, 2003, 285( 1 ) :237-249.
  • 8KONG Lingju, KONG Qingkai. Multi-point boundary value problems of second-order differential equations ( Ⅰ ) [ J]. Nonli- near Analysis, 2004, 58 (7-8) :909-931.
  • 9MA Ruyun. Positive solutions for second-order three-point boundary value problems [J]. Applied Mathematics Letters, 2001, 14(1) :1-5.
  • 10KONG Lingju, KONG Qingkai. Higher order boundary value problems with nonhomogeneous boundary condtions[J]. Non- linear Analysis, 2010, 72( 1 ) :240-261.

同被引文献34

  • 1陈顺清.一类三阶三点非线性边值问题的正解[J].四川师范大学学报(自然科学版),2004,27(4):360-363. 被引量:5
  • 2冯育强,刘三阳.一类非线性三阶边值问题的可解性[J].工程数学学报,2007,24(3):543-546. 被引量:10
  • 3Anderson D, Davis J M. Multiple solutions and eigenvalues for third -order fight focal boundary value problem[J]. J Math Anal Appl,2002,267( 1 ) :135 - 157.
  • 4Bai Z B, Fei X L. Existence of triple positive solutions for a third order generalized right focal problem[J]. Math Inequal Appl, 2006,9 ( 3 ) :437 - 444.
  • 5Feng Y Q, Liu S Y. Solv'ability of a third -order two -point boundary value problem[ J]. Appl Math l-ett ,2005,18(9) :I034 -1040.
  • 6Guo L J, Sun J P, Zhao Y H. Existence of positive solutions for nonlinear third - order three - point boundary value problems [J]. Nonlinear Anal, 2008,68 ( 10 ) : 3 l 51 - 3158.
  • 7Sun Y P. Positive solutions for third -order three -point nonhomogeneous boundary value problems[J]. Appl Math Lett,2009, 22(1) :45 -51.
  • 8Boucherif A, A1 - Malki N. Nonlinear three - point third order boundary value problems [ J ]. Appl Math Comput,2007,190 (2) 1168 - 1177.
  • 9Hopkins B, Kosmatov N. Third - order boundary value problems with sign - changing solutions [ J]. Nonlinear Anal,2007 67(1 ) :126 - 137.
  • 10E1 - Shahed M. Positive solutions for nonlinear singular third order boundary value problem [ J ]. Commun Nonlinear Sci Num Sim- ulation, 2009,14 ( 2 ) : 424 - 429.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部