期刊文献+

迭代扩展卡尔曼辅助粒子滤波及算法性能分析 被引量:6

Iterated extended Kalman auxiliary particle filter and analysis of algorithm' performance
下载PDF
导出
摘要 用迭代扩展卡尔曼滤波方法来生成辅助粒子滤波的重要性密度函数,得到了一种新的改进的滤波算法:迭代扩展卡尔曼辅助粒子滤波.仿真结果表明,该算法在观测量较精确的情况下改善了粒子权值分布,减轻了粒子退化现象,该算法不仅要优于已有的滤波方法,而且比无忌卡尔曼粒子滤波运行时间短.分析了各算法改进的原因及适应情况. In this paper, an improved filter procedure, named the iterated extended Kalman auxiliary particle filter (APF-IEKF), is proposed. The proposed algorithm consists of an auxiliary particle filter that uses an iterated extended Kalman filter to generate the importance proposal distribution. The simulation results show that the new procedure improves the distribution of the weights in the case of accurate measurement, which mitigates the effects of particle degeneracy problem. The experimental results also illustrate that the improved particle filter is superior to the existing filters and that it has less running time than the unscented Kalman particle filter(PF-UKF). Additionally, the performance of these algorithms is compared and some reasons of performance improving of each algorithm are analyzed.
作者 席燕辉 彭辉
出处 《系统工程学报》 CSCD 北大核心 2012年第5期593-599,共7页 Journal of Systems Engineering
基金 国家自科基金委创新群体资助项目(70921001) 湖南省科技厅国际合作重点资助项目(2009WK2009)
关键词 粒子滤波 辅助粒子滤波 迭代卡尔曼滤波 重要性密度函数 particle filter auxiliary particle filter iterated extended Kalman filter importance density function
  • 相关文献

参考文献10

  • 1Arulampalam S, Maskell S, Gordon N, et al. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking[J] IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 2Daum F. Nonlinear filters: Beyond the Kalman filter[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 3齐国元,陈增强,袁著祉.一类基于神经网络非线性随机系统自适应滤波[J].系统工程学报,2003,18(5):419-425. 被引量:3
  • 4Bell B. The iterated Kalman smoother as a Gauss-Newton method[J]. SIAM Optimiz, 1994, 4(3): 626-636.
  • 5Merwe R V, Doucet A, Freitas J F G. The Unscented particle Filters[R]. Cambridge: Engineering Department of University of Cambridge, CUED/F-INFENF/TR 380, 2000.
  • 6Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models[J]. Journal of Computational and Graphical Statistics, 1996, 5(1): 1-25.
  • 7Smith L. Sequential Monte Carlo Particle Filtering for State Estimation[D]. Ottawa: Carleton University, 2006.
  • 8Xiong Jie. An Introduction to Stochastic Filtering Theory[M]. New York: Oxford University Press, 2008: 121-230.
  • 9Pit M, Sbephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association, 1999 94(446): 590-599.
  • 10Adam M J, Arnaud D. A note on auxiliary particle filters[J]. Statistical and Probability Letters, 2008, 78(12): 1498-1504.

二级参考文献3

  • 1Leondes C T. Control and Dynamic System: Nonlinear and Kalman Filtering Techniques[M]. New York: Academic Press, 1983.
  • 2Chao C T, Teng C C. A fuzzy neural network based extended Knlman rater[J] . International Journal of Systems Science, 1996, 27(3) : 333-339.
  • 3Levie A U, Narendra K S. Control of nonlinear dynamical systems using neural networks-Part Ⅱ: Observability, identification, and control[J]. IEEE Transactions on Neural Networks, 1996, 7(1) : 30-42.

共引文献2

同被引文献85

引证文献6

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部