期刊文献+

Properties and appropriate conditions of stress reduction factor and thermal shock resistance parameters for ceramics

Properties and appropriate conditions of stress reduction factor and thermal shock resistance parameters for ceramics
下载PDF
导出
摘要 Through introducing the analytical problem of the plate with convection into the solution of the transient heat conduction thermal stress field model of the elastic plate, the stress reduction factor is presented explicitly in its dimensionless form. A new stress reduction factor is introduced for the purpose of comparison. The proper- ties and appropriate conditions of the stress reduction factor, the first and second ther- mal shock resistance (TSR) parameters for the high and low Biot numbers, respectively, and the approximation formulas for the intermediate Blot number-interval are discussed. To investigate the TSR of ceramics more accurately, it is recommended to combine the heat transfer theory with the theory of thermoelasticity or fracture mechanics or use a numerical method. The critical rupture temperature difference and the critical rup- ture dimensionless time can be used to characterize the TSR of ceramics intuitively and legibly. Through introducing the analytical problem of the plate with convection into the solution of the transient heat conduction thermal stress field model of the elastic plate, the stress reduction factor is presented explicitly in its dimensionless form. A new stress reduction factor is introduced for the purpose of comparison. The proper- ties and appropriate conditions of the stress reduction factor, the first and second ther- mal shock resistance (TSR) parameters for the high and low Biot numbers, respectively, and the approximation formulas for the intermediate Blot number-interval are discussed. To investigate the TSR of ceramics more accurately, it is recommended to combine the heat transfer theory with the theory of thermoelasticity or fracture mechanics or use a numerical method. The critical rupture temperature difference and the critical rup- ture dimensionless time can be used to characterize the TSR of ceramics intuitively and legibly.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第11期1351-1360,共10页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China (Nos. 90916009 and11172336)
关键词 stress reduction factor thermal shock resistance (TSR) parameter ceram-ics Biot number Fourier number stress reduction factor, thermal shock resistance (TSR) parameter, ceram-ics, Biot number, Fourier number
  • 相关文献

参考文献2

二级参考文献37

  • 1Nowacki W. Dynamic Problems of Thermodasticity [ M ]. Warszawa: Polish Scientific Publishers, 1975.
  • 2Wang H M, Ding H J, Chen Y M. Thermoelastic dynamic solution of a multilayered spherically isotropic hollow sphere for spherically symmetric problems[J]. Acta Mechanica,2005, 173( 1/4): 131-145.
  • 3Bellman R, Kolaba R E, Lockette J A. Numerical Inversion of the Laplace Transform [M]. New York:American Elsevier Pub Co, 1955.
  • 4Dhaliwal R S,Sing A. Dynamic Coupled Thermoelasticity[M].Delhi:Hindustan Publ, 1980.
  • 5Biot M A. Thermoelasticity and irreversible thermodynamics[ J]. J Appl Phys, 1956,27(3) :240-253.J
  • 6Chadwick P. Thermoelasticity, the Dynamical Theory[M].In:Hill R, Sneddon I N,Eds.Progress in Solid Mechanics. Vol 1.Amsterdam: North Holland, 1960.
  • 7Lord H, Shulman Y.A generalized dynamical theory of thermoelasticity[ J]. Mech Phys Solid, 1967,15 (5) : 299-309.
  • 8Green A E, Lindsay K A. Thermoelasticity[J]. J Elast, 1972,2( 1 ) : 1-7.
  • 9Tzou D Y. Experimental support for the lagging behavior in heat propagation[J]. J Thermophys Heat Transf, 1995,9(4) : 686-693.
  • 10Mitra K, Kumar S, Vedaverg A. Experimental evidence of hyperbolic heat conduction in processed meat[J]. J Heat Transfer, ASME, 1995,117 (3) : 568-573.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部