期刊文献+

基于sym8小波和部分hadmard矩阵的深空图像压缩编码 被引量:4

Deep-space image compression coding based on sym8 wavelet and partial hadmard matrix
原文传递
导出
摘要 针对传统深空图像编码导致系统资源极大浪费的问题,提出了基于sym8小波和部分hadmard矩阵的深空图像压缩感知编码方法。对图像sym8小波分解后的低频系数进行3级小波分解后用CCSDS编码,高频系数利用部分hadmard矩阵观测后进行量化编码。解码时,CCSDS解码恢复低频系数,正交匹配追踪算法恢复高频系数,然后再通过逆sym8小波变换合成图像。仿真结果表明:相同压缩比下峰值信噪比比小波稀疏基方法和单层小波压缩感知方法分别有5~8 dB和1~1.4 dB的明显提升。 In view of the problem of classical deep-space image coding resulting in great waste of system resource,the authors proposed a deep-space image coding method based on the sym8 wavelet bases and the partial hadmard matrix.After the sym8 wavelet decomposition of images,the low frequency coefficients were conducted by the three-layer wavelet decomposition and then CCSDS encoding;the high frequency coefficients were observed by use of the part hadmard matrix and then were conducted by quantify coding.For the decoding,the CCSDS decoding was used to recover the low frequency coefficients and the orthogonal matching pursuit algorithm was used to restore the high frequency coefficients,then the images were reconstructed through the inverse sym8 wavelet transformation.The simulation results show: at the same compression ratio,compared with the wavelet sparse base method and the single-layer wavelet compressed sensing method,the peak value signal-to-noise ratio of the proposed method has 5~8 dB and 1~1.4 dB average improvements respectively.
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2012年第5期646-651,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金资助项目(61271261 61102151 60972069 61001105) 重庆市科委自然科学基金(CSTC2012jjA40048 CSTC 2011BA2041)~~
关键词 图像编码 压缩感知 sym8小波变换 部分hadmard矩阵 image coding compressed sensing sym8 wavelet transformation part hadmard matrix
  • 相关文献

参考文献6

二级参考文献218

  • 1王晓东,刘文耀,朱昊,梁春永.无链表SPIHT图像提升小波编码的硬件算法[J].西南交通大学学报,2005,40(4):492-495. 被引量:5
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献993

同被引文献28

  • 1BertalmioM, SapiroG, CaseltesV, etal. Imageinpainting[C]// ACM SIC, GRAPH. Proceedings of the ACM SIGGILa.PH Con- ference on Computer Graphics. SIGGRAPH 2000. Orleans: As- sociation for Computing Machinery, 2000 : 417-424.
  • 2Bertalmio M, Vese L, Sapiro G, et al. Simultaneous structure and texture image inpainting[J]. IEEE Transactions on Image Pro- cessing, 2003,12(8) : 882-889.
  • 3Chan T, Shen J. Variational image inpainting [J]. Communica- tions on Pure and Applied Mathematics,2005,58(5):579-619.
  • 4Cai J,Chana R H,Shen Z. A framelet-based image inpainting al- gorithm[J]. Applied and Computational Harmonic Analysis, 2008,24(2) : 131-149.
  • 5Shen Z. Wavelet Frames and Image Restorations[C]//Rajendra B. Proceedings of the International Congress of Mathematicians 2010. ICM 2010.Hyderabad, India: World Scientific Publishing, 2010:2834-2863.
  • 6Alliney S. Digital filters as absolute norm regularizers[J]. IEEE Transactions on Signal Processing, 1992,40(6) : 1548-1562.
  • 7Chan T, Esedoglu S. Aspects of Total Variation Regularized IA Function Approximation[J]. SIAM Journal on Applied Mathe- matics, 2005,65 (5) : 1817-1837.
  • 8Nikolova M. A Variational Approach to Remove Outliers and Impulse Noise[J]. Journal of Mathematical Imaging and Vision, 2004,20 ( 1 ) : 99-120.
  • 9Ernie E. Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman [ R]. UCLA CAM Report (09-3 1). Los Angeles: UCLA, 2009.
  • 10Tai X,Wu G. Augmented Lagrangian method,dual methods and split Bregman iteration for ROF model[C]//Tai X. Scale Space and Variational Methods in Computer Vision. Proceedings Sec- ond International Conference. SSVM 2009. Berlin:Springer Vet- 1ag,2009:502-513.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部