期刊文献+

基于混沌系统的DES加密算法的研究与实现 被引量:1

Research and Implementation of DES Encryption Algorithm Based on Chaos System
下载PDF
导出
摘要 介绍了DES加密算法和混沌加密算法,在结合两者优良特性的基础上,提出了一种基于Lorenz系统和DES加密算法的混合加密方案,该算法利用Lorenz混沌方程生成DES所需要的密钥,大大扩展了DES加密算法的密钥空间,同时通过C++程序实现了该加密算法,实验结果表明该算法具有可行性。 The DES encryption algorithm and the characteristics of chaotic encryption algorithm were introduced and one kind of hybrid encryption algorithm based on Lorenz chaos equations and DES was also proposed, based on super advantages of two methods concerned. The algorithm generate DES cryptographic key by Lorenz chaos equations, greatly expanding the DES encryption algorithm cryptographic key space. Simultaneously, C++ procedure was used to realize this algorithm, the experimental results show that the algorithm is feasible.
出处 《辽宁工业大学学报(自然科学版)》 2012年第4期273-276,共4页 Journal of Liaoning University of Technology(Natural Science Edition)
基金 辽宁省教育厅科研基金资助(L2010178)
关键词 混沌 DES算法 密钥 LORENZ系统 数值仿真 chaos DES algorithm cryptographic key Lorenz systems numerical simulation
  • 相关文献

参考文献9

二级参考文献27

  • 1PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Phys Rcv Lett, 1990, 4(8): 821-824.
  • 2SHORT K M. Step toward unmasking secure communications[J], lnt J Bifur Chaos, 1994, 4(4): 959-977.
  • 3KOCAREV L, HALLE K S, ECKERT K, et al. Experimental demonstration of secure communication via chaotic synchronization[J].Int J Bifur Chaos, 1992, 2(3): 709-713.
  • 4PARLITZ D, CHUA L O, KOCAREV L, et al. Transmission of digital signals by chaotic synchronization[J].Int J Bifur Chaos, 1992,2(3): 973-977.
  • 5MATSUMOTO T, CHUA L O, KOBAYASHI K. Hyperchaos: laboratory experiment and numerical confimation[J]. IEEE Trans Circuits Syst, 1986,33(11 ): 1143-1147.
  • 6TAMASEVICIUS A. Hyperchaotic circuits: state of the art[A]. Proc 5th Int Workshop Nonlinear Dynamics Electronic Systems(NDES'97)[C]. Moscow Russia, 1997.97-102.
  • 7YANG T, WU C W, CHUA L O. Cryptography based on chaotic systems[J]. IEEE Trans Circuits Syst, 1997, 44(5): 469-472.
  • 8SHORT K M. Unmasking a modulated chaotic communications scheme[J]. Int J Bifur Chaos, 1996, 6(2): 367-375.
  • 9Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990,64 (8): 821-824.
  • 10Kocarev U, Parlitz L. General approach for chaotic synchronization with applications to communication[J]. Physical Review Letters, 1995,74(25): 5028-5031.

共引文献64

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部