期刊文献+

超薄晶硅太阳电池的上表面陷光结构研究(Ⅰ) 被引量:4

Upper-surface light-trapping structures on ultra-thin crystalline silicon solar cells(Ⅰ)
原文传递
导出
摘要 基于太阳光谱的特点和晶硅材料吸收光谱的性质,首先分析了超薄晶硅太阳电池上表面的陷光要求,然后利用传递矩阵法(TMM)和频域有限差分(FDFD)法设计上表面增透膜结构和织构结构,最后利用FDFD法分析了SiO2/SiN4双层增透膜结构和三角条带式表面织构结构构成的组合结构的光吸收效果。研究结果表明,在超薄晶硅太阳电池的有效吸收光谱范围(波长范围200~1 200nm)内,双层增透膜比单层增透膜具有更小的反射损耗;一维光子晶体表面织构结构中,使用三角条带式一维光子晶体比矩形条带式一维光子晶体具有更小的反射损耗。借助于透膜结构和三角条带式织构结构的优化参数,设计出入射角θ45°、波长处于200~1 200nm范围内和反射率小于5%的上表面结构形式。 Based on the spectrum features of sunlight and the absorption spectrum properties of crystalline Si materials, the light trapping requirements of upper-surface texture structures on ultra-thin crystalline silicon solar cells are first analyzed. Then the anti-reflection coating structures and texture structures on the upper surface are designed by transfer matrix method (TMM) and frequency domain finite difference (FDFD) method,respectively. Finally,the absorption effects of upper-surface texture structures combi- ning with anti-reflection coating structures are analyzed by FDFD method. The results show that the los- ses of double layer anti-reflection coatings are smaller than those of a single layer anti-reflection coating and the losses of surface texture with a triangular strip shape of one dimensional photonic crystals (1 DPCs) are smaller than those with rectangular strip shape of 1 DPCs. In addition,based on the optimal parameters of anti-reflection coating and surface texture with triangular strip 1 DPC,an effective upper- surface structure, which realizes the reflectivity less than 5 % when incident angle is less than 45° in the wavelength range between 200 nm and 1200 nm,is obtained.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第11期2066-2073,共8页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60974071) 辽宁省自然科学基金(201102005)资助项目
关键词 太阳电池 晶硅材料 陷光结构 光子晶体 solar cell; crystalline silicon material; light-trapping structure; photonic crystal
  • 相关文献

参考文献2

二级参考文献10

共引文献7

同被引文献58

  • 1H Abdullah, A Lennie, I Ahmad. Modelling and simulation single layer anti-reflective coating of ZnO and ZnS for silicon solar cells using Silvaco software [J]. Journal of Applied Sciences, 2009, 9(6):1180-1184.
  • 2A Lennie, H Abdullah, S M Mustaza. Photovoltaic properties of SigN, layer on silicon solar cell using silvaco software[J]. European Journal of Scientific Research, 2009, 29(4): 447-453.
  • 3B Shu, U Das, L Chen, et al.. Design of anti-reflection coating for surface textured interdigitated back contact silicon hetero-junction solar cell[C]. 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), IEEE, 2012. 002258-002262.
  • 4X Lu, S Lun, T Zhou, et al.. A low-cost high-efficiency crystalline silicon solar cell based on one-dimensional photonic crystal front surface textures[J]. Journal of Optics, 2013, 15(7): 075705.
  • 5M A Green, M Keevers. Optical properties of intrinsic silicon at 300 K[J]. Progress in Photovoltaics, 1995, 3(3): 189-192.
  • 6YouJ, Dou L, Yoshimura K. A Polymer Tandem Solar Cell with 10. 6% Power Conversion Efficiency[J] . Nature Communications, 2013,4 ( I ) : 1446.
  • 7Mohr NJ, Meijer A, Huijbregts M A 1, et a1. Environmental Life Cycle Assessment of Roof-Integrated Flexible Amorphous Siliconl Nanocrystalline Silicon Solar Cell Laminate[J]. Progress in Phoioioluucs , Research and Applications ,2013,21 (4) :802-815.
  • 8Zhang K, Su Z, Zhao L, et al. Improving the Conversion Efficiency ofCu2ZnSnS4 Solar Cell by Low Pressure SulIurization[J].Applied Physics Leu.ers,2014,104( 14): 141101.
  • 9Carmona C R, Malinkiewicz O, Soriano A, et al. Flexible High Efficiency Perovskite Solar Cells[J] . Energy & Emnronmerual Science, 20 14,7 (3) :994-997.
  • 10Wang S, Weil B D, Li Y, et al. Large-area Free-standing Ultrathin Single-crystal Silicon as Processable Materials[J]. Nano Leuers , 20 13,13 (9) :4393-4398.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部