期刊文献+

面向兴趣点推荐的时空序列模式挖掘方法

A novel Points of interest recommended method based on Spatio-Temporal sequence pattern mining
下载PDF
导出
摘要 本文将通过用户对兴趣点访问所产生的系列位置数据,依据时空数据的特性对原始数据集进行预处理,利用模式挖掘的方法分析兴趣点访问序列中的频繁模式,根据用户当前所在的位置或最近访问序列通过序列分析的方法进行模式匹配,并按照匹配程度给出兴趣点推荐列表。实验结果对比表明数据在预处理后不仅数据量上明显的减少,而且缩短了算法的执行时间,实验的最终结果显示了时空序列模式挖掘与模式匹配方法相结合在兴趣点推荐中的应用是可行的,这为复杂的时空数据分析提供了一种新的视角。 This paper will use users visited points of interest produced a series of location data, According to the characteristics of spatio-temporal data preprocessed of primitive data sets, Using pattern mining methods to analyze Points of interest's sequence of frequent pattern, According to the user's current location or recently visited sequence by sequence analysis method to pattern match- ing, and in accordance with matching degree given points of interest recommended list. The results show that the data comparing pretreatment not only significantly reduced the amount of data on, but also shortened the algorithm of the execution time, The final experimental results show that the spatial and temporal sequential pattern mining and pattern matching methods combining using in points of interest recommended is feasible, this method provides a new perspective for complex spatio-temporal data analysis.
作者 刘颖 孙冲武
出处 《微计算机信息》 2012年第10期471-473,共3页 Control & Automation
关键词 模式挖掘 模式匹配 兴趣点推荐 Pattern mining Pattern matching Points of interest recommended
  • 相关文献

参考文献14

  • 1Agrawal, R., Imielinski, T.,and Swami, A. (1993),"Mining As-sociation. Rules between Sets of Items in Large Databases," Pro-ceedings of the ACM SIGMOD Conf. on Management of Data,Washington, D.C.,pp. 207-216.
  • 2AgrawalR,Srikant R. Mining Sequential Patterns [A].Proc1995 Int Conf Data Engineering (ICDE95) [C].Taipei: IEEE Com-puter Society, 19953-14.
  • 3AgrawalR,Srikant R. Mining Sequential Patterns: Generaliza-tiongs and Performance Improvments [A].Proc 5th Int Conf Ex-tending Database Technology (EDBT) [C].Avignon: Lecture Notesin Computer Science, 1996 3-17.
  • 4HanJiawei, Pei Jian. FreeSpan: Frequent Pattern-Projected Se-quential Pattern Mining [C].In:Proc of 2000 Int. Conf. KnowledgeDiscovery And Data Mining (KDD * 00), Boston,MA,2000:355-359.
  • 5EIJ, HAN J. PrefixSpan: mining sequential patterns efficientlyby prefix-projected pattern growth [C] //Proc of the 7th Interna-tional Conference on Data Engineering. Washington DC: IEEEComputer Society, 2001: 215 - 224.
  • 6SPADE: an efficient algorithm for mining frequent se-quences [J].Mach Learning, 2001, 41 (1/2): 31-60.
  • 7WILSON C. Activity pattern analysis by means of sequencealignment met hods[J].Environment and Planning ,1998 (30):1017-1038.
  • 8A.T. Gediminas Adomavicius,“ Toward the next generation ofrecommender systems: A survey of the state-of-the-art and possi-ble extensions,,lEEE Transactions on Knowledge and Data Engi-neering, vol. 17,pp. 734-749,2005.
  • 9AlvaroE. Monge and Charles P .The field matching problem:Algorithms and applications [J].In : Proceedings of the Second In-ternet Conference on Knowledge Discovery and Data Mining Ore-gon ,Portland , 1996-8:267-270.
  • 10汪琳,庄卫华.一种Web日志序列模式挖掘的改进方法[J].计算机工程与应用,2010,46(7):136-138. 被引量:1

二级参考文献113

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部