期刊文献+

EMD近似熵结合支持向量机的心音信号识别研究 被引量:16

Heart sound recognition based on EMD approximate entropy and SVM
下载PDF
导出
摘要 针对心音信号的非线性、非平稳特征和心音识别准确率不高且分类速度较慢的实际情况,提出一种经验模式分解(Empirical Mode Decomposition,EMD)近似熵(Approximate Entropy,ApEn)结合支持向量机(Support Vector Machine,SVM)的心音分类识别方法。通过EMD方法将非平稳的心音振动信号分解成若干个平稳的固有模态函数(Intrinsic Mode Function,IMF);利用互相关系数准则对IMF进行筛选,计算所筛选IMF的近似熵构成特征向量;将特征向量输入SVM分类器进行分类识别。对临床采集的心音样本按该方法进行测试,结果表明,该方法能有效地用于心音识别。 Aiming at the non-stationary and non-linear characteristics of a heart sound and the difficulty to gain higher accuracy and classification speed, a new pathological diagnosis method based on empirical mode decomposition (EMD) approximate entropy (ApEn) and support vector machine (SVM) was proposed. Firstly, the heart sound signals were decomposed into a finite number of intrinsic mode function (IMF). Then, the ApEns of five IMFs were used to form eigenvectors. Finally, the eigenvectors were put into a support vector machine categorizcr for automatic discrimination between normal and abnormal signals. The clinical data experimental diagnosis and test results showed that the approach proposed can identify the pathological heart sound effectively.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第19期21-25,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(30770551) 重庆市新型医疗器械重大科技专项(CSTC 2008AC5103)
关键词 经验模式分解 心音 近似熵 支持向量机 empirical mode decomposition ( EMD ) heart sound approximate entropy (ApEn) support vector machine (SVM)
  • 相关文献

参考文献14

  • 1张国华,袁中凡,李彬彬.心音信号特征提取小波包算法研究[J].振动与冲击,2008,27(7):47-49. 被引量:21
  • 2Rakovic P, Sejdic E, Stankovic LJ, et al. Time-Frequency Signal Processing Approaches with Applications to Heart Sound Analysis[J]. Computers in Cardiology, 2006, 33: 197- 200.
  • 3Maglogiannis I, Loukis E, Zafiropoulo SE. Support vectors machine based identification of heart valve diseases using heart sounds[J]. Computer Methods and Programs in Biomedical. 2009, 95(1): 47-61.
  • 4Debbal SM, Bereksi-Reguig F. Computerized heart sounds analysis[J]. Computers in Biology and Medicine, 2008, 38: 263-280.
  • 5Kumar, Carvalho P, Antune S M. Discrimination of heart sounds using choas analysis in various subbands[C]. //BIOSIGNALS. Proc of the 2nd International Conference on Bio-inspired Systems and Signal Processing. 2009: 369- 375.
  • 6Steven P M. Approximate entropy as a measure of system complexity [J]. Pro Natl Acard Sci USA, 1991, 88(6): 2297-2301.
  • 7胥永刚,何正嘉.分形维数和近似熵用于度量信号复杂性的比较研究[J].振动与冲击,2003,22(3):25-27. 被引量:53
  • 8V.VAPNIK. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 9Chen N Y, Lu W C, Yang J, et al. Support Vector Machine in chemistry [M]. Singapore: World Scientific Publishing Company, 2004: 24-30.
  • 10王凯,张永祥,李军.遗传算法和支持向量机在机械故障诊断中的应用研究[J].机械强度,2008,30(3):349-353. 被引量:14

二级参考文献56

共引文献115

同被引文献138

引证文献16

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部