期刊文献+

基于实值信号子空间的虚拟阵列解相干算法

A virtual array decorrelation algorithm based on thereal signal subspace
下载PDF
导出
摘要 针对存在相干信源时,传统的DOA估计算法失效问题,提出一种基于实值特征子空间的虚拟阵列解相干算法.该算法根据虚拟阵列变换的思想,利用阵列接收数据构造虚拟子阵,实现对信号的解相干处理,并将协方差矩阵从复数域变换为实数域,获得一个实值信号子空间,最后利用实数域ESPRIT(Unitary ESPRIT)估计信号波达方向.该方法避免了阵列孔径损失,保持了阵列的空间分辨率,估计精度高,利用个阵元可估计个信源,且引入实数域处理和无需空间谱搜索,运算量小。计算机仿真验证了该方法的有效性和优越性. As for the problem of direction of arrival (DOA) estimation in a coherent environment, many existing methods do not work correctly when existing a coherent source. In view of this problem, a virtual array decorrela- tion algorithm based on the real-valued feature subspace method was proposed. With regard to this approach, a vir- tual sub-array can be constructed by the received data to de-correlate the coherent sources based on virtual array translation. Then a real signal subspace can be obtained by changing the complex number field into the real number field of the covariance matrix, and at last the direction of arrival (DOA) can be estimated by using the unitary ES- PRIT method. With this method, the effective array aperture is not decreased, the spatial resolution of array is re- mained, and the estimation precision is high. The coherent signals are detected with sensors. The computation load is reduced by using the unitary ESPRIT method without a spectral peak search. This method has better performance in estimation accuracy; the results of simulation verified the effectiveness and superiority of the algorithm.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第9期1132-1137,共6页 Journal of Harbin Engineering University
基金 新世纪优秀人才支持计划资助项目(NCET-11-0827) 国家自然科学基金资助项目(60704018) 中国高校基本科研业务费专项基金资助项目(HEUCF121707 HEUCF121706)
关键词 相干信源 虚拟阵列 信号子空间 实数域 ESPRIT 波达方向 coherent signal virtual array signal subspace unitary ESPRIT direction of arrival
  • 相关文献

参考文献4

二级参考文献14

  • 1崔冬,丛玉良,顾广华.基于共轭数据重排的信道预测算法[J].吉林大学学报(信息科学版),2005,23(6):574-577. 被引量:1
  • 2李海森,周天,朱志德,孙圣和.前后向空间平滑对相关信号源的DOA估计性能[J].哈尔滨工业大学学报,2007,39(3):416-419. 被引量:8
  • 3PILLAI S U. Forward/backward spatial smoothing techniques for coherent signal identification [ J ]. IEEE Trans Acoust Speech, Signal Processing, 1991,39 ( 11 ) : 2436- 2449.
  • 4WANG H, LIU K J R,ANDERSON H. Spatial smoothing for arrays with arbitrary geometry[ C ]//Proc ICASSP-94, 1994 : 509-512.
  • 5SCHMIDT R O. Multiple emitter location and signal parameter estimation [ J ]. IEEE Trans on Antennas and Propagation, 1986,34(3 ) : 276-280.
  • 6CHOY H. Coherent source localization with forward/backword covariance matrices [ C ]//IEEE Proc Radar Sonar Navig, 2002,149(3) : 145-151.
  • 7SHAN T, KAILATH W. On spatial smoothing for direction arrival estimation of coherent signal [ J ]. IEEE Trans ASSP 1985,33:806-811.
  • 8KIM K K,SARKAR T K,WANG H,et al. Direction of arrival estimation based on temporal and spatial processing using direct data domain( D3 ) approach [ J ]. IEEE Trans on Antennas and Propagation, 2004, 52(2) : 533-541.
  • 9Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans on AP, 1986, 34(3): 276 - 280
  • 10Wang Buhong,Wang Yonghang. Weighted spatial smoothing for DOA estimation of coherent signals. 2002 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, San Antonio, Texas, USA, 2002. 668-671

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部