期刊文献+

双目视觉小波域SIFT匹配与极线约束算法研究 被引量:1

Study on Combined Wavelet-SIFT Matching and Epipolar Constraint Algorithm for Binocular Stereo Vision
下载PDF
导出
摘要 研究双目立体视觉技术,特征的提取和匹配是双目视觉的最基本的问题。目前,SIFT已经被证明鲁棒性最好的局部不变特征描述符。但是SIFT算法产生的误匹配较多,精度偏低,为了解决这一问题,同时降低算法特征提取与匹配的复杂度,达到双目立体视觉实时性的要求,文中提出了一种结合小波变换和SIFT特征点的双目立体视觉匹配方法。首先,对双目视觉系统采集的左、右图像进行小波分解,把分解得到的低频图像作为输入,用SIFT算法进行特征点的初始匹配,再利用极线约束的理论求得精确匹配。实验结果表明,该方法具有较强的适应性,能够在减少误匹配的同时,大大加快运算速度。 The feature extraction and matching is the basic problem for binocular stereo. SIFT has proved to be the most robust local invar iant feature descriptor in object recognition and matching. Howerver, it generates the mismatch and low precision. In order to solve this problem and reduce complexity of the SIFT algorithm, meeting the higher accuracy and real-time requirements of binocular stereo vision, present an algorithm of binocular stereo vision matching approach based on wavelet transformation and scale invariance feature transfor- mation { SIFT ). First, process the left and fight images respectively collected by binocular stereo vision system based on the method of wavelet decomposition. Then complete the initial match of feature point to low frequency image obtained by decomposition with SIFT al- gorithm. Finally, achieve exact match in accordance with epipolar constraint theory. The experimental results prove that this algorithm has a strong adaptability. It makes high matching accuracy and enhances the computing speed.
出处 《计算机技术与发展》 2012年第11期81-84,共4页 Computer Technology and Development
基金 广东省教育部产学研结合项目(2010B090400186)
关键词 小波变换 立体匹配 尺度不变特征变换 极线约束 wavelet stereo matching SIPT the epipolar constraint
  • 相关文献

参考文献8

二级参考文献33

  • 1贾涛,陈涛,杨润奎.基于仿射不变量的长基线立体匹配[J].仪器仪表学报,2005,26(z1):623-624. 被引量:2
  • 2YANG ZH W, FERNAND S C. Image registration and object recognition using affine invariants and convex hulls [ C ]. IEEE Trans. on Image Processing, 1999: 934 -946.
  • 3GOSHTASBY A. A symbolically-assisted approach to digital image registration with application in computer vision [ D ]. PhD dissertation, Dept. of Computer Science, Michigan State University, TR 83-013, 1983.
  • 4REDDY B S, CHATTERJI B N. An FFT-based rotation and scale-invariant image registration [ J ]. IEEE Trans. on Image Processing, 1996,5 (8) : 1266-1271.
  • 5PRITCHETT P, ZISSERMAN A. Wide Baseline Stereo [ C ]. Int. Conference on Computer Vision, 1998: 754-759.
  • 6TUYTELAARS T, VAN GOOL L. Wide baseline stereo matching based on local, affinely invariant regions [ C ]. British Machine Vision Conference BMVC2000, 2000: 412425.
  • 7TUYTELAARS T, VAN GOOL L. Matching widely separated views based on affinely invariant neighborhoods [ J ]. International Journal of Computer Vision, 2004,59 ( 1 ) :61-85.
  • 8LOWE W. Distinctive image features from scale-invariant key points[J]. IJCV, 2004,2(60) :91-110.
  • 9LINDEBERG T, BART M. Ter hair romeny, linear scale space [ M ]. Netherlands: Kluwer Academic Publishers, 1994.
  • 10WITKIN A P. Scale space filtering[ C]. Int. Joint Conf. Artificial Intelligence, 1983 : 1019-102.

共引文献165

同被引文献9

  • 1Mikolajczyk K,Tuytelaars T,Schmid C,et al.A comparis onof affine region detectors[J].International Journal of Com-puter Vision,2005,65( 1/2):43-72.
  • 2Mikolajczyk K,Schmid C.A performance evaluation of localdescriptors[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2005,27(10):1615-1630.
  • 3Nunez P,Vazquez-Martin R,Bandera A.Visual odometrybased on structural matching of local invariant features usingstereo camera sensor[J].Sensors,2011(11):7262-7284.
  • 4Lowe D G.Distinctive image features from local scale-invari-ant features[J].International Conference on Computer Vi-sion,1999(9):1150-1157.
  • 5Lowe D G.Distinctive image features from scale-invariantkeypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 6StephenS,Lowe D G,Little J J.Vision-based global locali-azation and mapping for mobile robots[J].IEEE Transactionon Robotics,2005,21 (3):364-375.
  • 7王彭林,石守东,洪小伟.基于SIFT算法的移动机器人同时定位与地图创建[J].宁波大学学报(理工版),2008,21(1):68-71. 被引量:5
  • 8郑永斌,黄新生,丰松江.SIFT和旋转不变LBP相结合的图像匹配算法[J].计算机辅助设计与图形学学报,2010,22(2):286-292. 被引量:112
  • 9杨幸芳,黄玉美,韩旭炤,杨新刚.一种提高SIFT特征匹配效率的方法[J].中国机械工程,2012,23(11):1297-1301. 被引量:9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部