期刊文献+

伪黎曼空间形式中类空子流形的Willmore泛函与Weyl泛函的不等式

An inequality between Willmore functional and Weyl functional for spacelike submanifolds in semi-Riemannian space forms
下载PDF
导出
摘要 得到伪黎曼空间中类空子流形的Willmore泛函与Weyl泛函满足的一个不等式,并证明了等号成立当且仅当该类空子流形是全脐子流形. An inequality between Willmore functional and Weyl functional for spacelike submanifolds in semi-Riemannian space forms is obtained,and it is proved that the equality holds if and only if the submanifold is a totally umbilic one.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第6期1-4,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11261051) 甘肃省高等学校基本科研业务费资助项目
关键词 类空子流形 Willmore泛函 Weyl泛函 全脐子流形 spacelike submanifold Willmore functional Weyl functional totally umbilic submanifold
  • 相关文献

参考文献9

  • 1KOBAYASHI O. On a conformally invariantfunctional of the space of Riemannian metrics[J]. JMath Soc Japan , 1985,37 - 373-389.
  • 2WILLMORE T J. Notes on embedded surfaces[J].Ann Stiint Univ Al I Cuza Iasi Sect la Mat ( NS).1965, 11: 493-496.
  • 3GURSKY M J. Locally conformally at four- and six-manifolds of positive scalar curvature and positiveEuler characteristic [ J ]. Indiana Univ Math J,1994, 43: 747-774.
  • 4GURSKY M J. The Weyl functional, de Rhamcohomology, and Kaehler-Einstein metrics[J]. AnnMath, 1998, 148; 315-337.
  • 5SINGER M A. Positive Einstein metrics with smallLn/2-norm of the Weyl tensor[J]. DiffGeom Appl,1992, 2: 269-274.
  • 6WU Lan, LI Hai-zhong. An inequality betweenWillmore functional and Weyl functional forsubmanifolds in space forms [ J J. Monatsh Math ,2009, 158: 403-411.
  • 7CHERN S S,do CARMO M F,KOBAYASHI S_Minimal submanifolds of a sphere with secondfundamental form of constant length[M] //BR()WERF. Functional Analysis and Related Fields. NewYork: Springer, 1970 : 59-75.
  • 8KOBAYASHI O. A Willmore type problem for S2 XS2[M] //GU Chao-hao, BERGER M, BRYANT RL. Differential Geometry and DifferentialEquations. Lecture Notes Math Vol 1255. Berlin:Heidelberg; Springer-Verlag, 1987 : 67-72.
  • 9CECIL T E, RYAN P J. Focal sets, tautembeddings and the cyclides of Dupin [ J ]. MathAnn, 1978,236: 177-190.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部