伪黎曼空间形式中类空子流形的Willmore泛函与Weyl泛函的不等式
An inequality between Willmore functional and Weyl functional for spacelike submanifolds in semi-Riemannian space forms
摘要
得到伪黎曼空间中类空子流形的Willmore泛函与Weyl泛函满足的一个不等式,并证明了等号成立当且仅当该类空子流形是全脐子流形.
An inequality between Willmore functional and Weyl functional for spacelike submanifolds in semi-Riemannian space forms is obtained,and it is proved that the equality holds if and only if the submanifold is a totally umbilic one.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2012年第6期1-4,共4页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11261051)
甘肃省高等学校基本科研业务费资助项目
参考文献9
-
1KOBAYASHI O. On a conformally invariantfunctional of the space of Riemannian metrics[J]. JMath Soc Japan , 1985,37 - 373-389.
-
2WILLMORE T J. Notes on embedded surfaces[J].Ann Stiint Univ Al I Cuza Iasi Sect la Mat ( NS).1965, 11: 493-496.
-
3GURSKY M J. Locally conformally at four- and six-manifolds of positive scalar curvature and positiveEuler characteristic [ J ]. Indiana Univ Math J,1994, 43: 747-774.
-
4GURSKY M J. The Weyl functional, de Rhamcohomology, and Kaehler-Einstein metrics[J]. AnnMath, 1998, 148; 315-337.
-
5SINGER M A. Positive Einstein metrics with smallLn/2-norm of the Weyl tensor[J]. DiffGeom Appl,1992, 2: 269-274.
-
6WU Lan, LI Hai-zhong. An inequality betweenWillmore functional and Weyl functional forsubmanifolds in space forms [ J J. Monatsh Math ,2009, 158: 403-411.
-
7CHERN S S,do CARMO M F,KOBAYASHI S_Minimal submanifolds of a sphere with secondfundamental form of constant length[M] //BR()WERF. Functional Analysis and Related Fields. NewYork: Springer, 1970 : 59-75.
-
8KOBAYASHI O. A Willmore type problem for S2 XS2[M] //GU Chao-hao, BERGER M, BRYANT RL. Differential Geometry and DifferentialEquations. Lecture Notes Math Vol 1255. Berlin:Heidelberg; Springer-Verlag, 1987 : 67-72.
-
9CECIL T E, RYAN P J. Focal sets, tautembeddings and the cyclides of Dupin [ J ]. MathAnn, 1978,236: 177-190.
-
1刘建成,王丽莉.伪黎曼空间形式中的伪平行类空子流形[J].西北师范大学学报(自然科学版),2010,46(6):15-18. 被引量:2
-
2苏曼,张量.关于伪黎曼空间形式中类空子流形Chen不等式的两个结果[J].山东大学学报(理学版),2016,51(10):59-64.
-
3张攀,张量,宋卫东.伪黎曼空间形式中类空子流形的几何不等式[J].山东大学学报(理学版),2014,49(6):91-94. 被引量:3
-
4李志波,叶耀军.半黎曼空间形式的极大类空叶状结构[J].河南科学,1996,14(4):357-361.