期刊文献+

GPS/AHRS紧耦合系统中改进的SRUKF算法 被引量:2

An improved SRUKF in a tightly-coupled GPS/AHRS system
下载PDF
导出
摘要 在GPS/AHRS(航姿参考系统)组合导航的数据融合中,常规UKF在应用中由于计算误差易导致协方差负定,影响滤波的精度,甚至使滤波发散而导致系统无法正常工作.针对这一问题提出了一种改进的自适应SRUKF算法,不仅能够解决协方差负定带来的系统无法正常工作的问题,而且能够在保证精度的同时降低系统的计算量.仿真数据结果表明,在先验噪声未知并且噪声时变的情况下,改进的自适应SRUKF算法能够提高系统的精度和稳定性. In the data fusion of tightly errors of traditional UKF resulted in a coupled GPS/Attitude Heading Reference negative definite state of covariance. The System (AHRS), the calculation results may uhimately reduce the accuracy of filter and even cause divergence of filters which lead to abnormality of the system. An improved adaptive SRUKF (square root unsensitive Kalman filter) provided in this paper, can help solve the problem of negative definite state covariance and lower calculation complexity. The filtering results of the simulation data show that, under the condition of unknown and real-time system noise statistics, the improved adaptive SRUKF in a tightly coupled integrated navigation system have better performance both in accuracy and in robustness.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第10期1300-1303,共4页 Journal of Harbin Engineering University
基金 国家863计划基金资助项目(2009AA12Z314)
关键词 平方根不敏卡尔曼滤波 全球定位系统 航姿参考系统 紧耦合 组合导航 SRUKF GPS AHRS tightly-coupled integrated navigation
  • 相关文献

参考文献7

  • 1HIDE C, MOORE T. GPS and low cost INS integration for po- sitioning in the urban environment [ C ]// Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation. [ s. 1. ], 2005 : 1007-1015.
  • 2JULIER S J , UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear system [ C ]//Proc of the American Control Conference. Seattle, USA, 1995 : 1628-1632.
  • 3ZHOU Junchuan, KNEDLIK S, EDWAN E, et al. Low- cost INS/GPS with nonlinear filtering methods[ C]//2010 13th Conference on Information Fusion(FUSION). Siegen, Germany, 2010 : 1-8.
  • 4JWO Dahjing, LAI Shihyao. Navigation integration using the fuzzy strong tracking unscented Kalman filter [ J ]. The Journal of Navigation, 2009, 62 (2) : 303-322.
  • 5卢舒勃,杨永胜,敬忠良.基于UKF的INS/GPS组合导航系统仿真[J].科学技术与工程,2011,11(4):773-778. 被引量:4
  • 6ZHANG Liguo, MA Haibo, CHEN Yangzhou. Square-root un- scented Kalman filter for vehicle integrated navigation [ C ]// Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, HongKong, 2007: 556-561.
  • 7王惠南.GPS导航原理与应用[M].北京:科学出版社,2004.

二级参考文献7

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2Julier S J,Uhlamnn J K.A new extension of Kalman filter to nonlinear systems.The Proceedings of the American control conference.Seattle Washington,1995:1628-1632.
  • 3Julier S J,Uhlamnn J K,Durrant Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimation.IEEE Trans on Automatic Control,2000;45(3):477-482.
  • 4Wan E A,Van Der Merwe R.The unscented Kalman filter for nonlinear estimation.Adaptive Systems for Signal Processing,Communication and Control Symp,2000:153-158.
  • 5秦永远,张洪铖,汪叔华等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998
  • 6周星伶.GPS/INS组合导航系统松、紧耦合性能比较[J].航空电子技术,2007,38(4):1-6. 被引量:20
  • 7周坤芳,吴晞,孔键.紧耦合GPS/INS组合特性及其关键技术[J].中国惯性技术学报,2009,17(1):42-45. 被引量:30

共引文献9

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部