期刊文献+

一阶时滞差分方程反周期解的存在性

Existence of Anti-Periodic Solutions of First Neutral Delay Difference Dquations
下载PDF
导出
摘要 以Leray-schauder非线性抉择为工具,研究了一阶含参时滞差分方程反周期解的存在性,获得了当参数在一定范围取值时反周期解的存在性结果,得到了反周期解存在的充分条件,并通过实例表明结果的可行性。 Taking the Leray-schauder nonlinear alternative as a tool, the existence of anti-periodic solutions of first neu- tral delay difference equations with parameter is discussed. The existence of anti-periodic solutions is obtained when the pa- rameter belongs to appropriate intervals. Therefore, the sufficient conditions for existence of anti-periodic solutions are ob- tained. The example shows the feasibility of the main results.
出处 《四川理工学院学报(自然科学版)》 CAS 2012年第5期84-86,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 国家自然科学基金资助项目(60736029)
关键词 时滞差分方程 反周期解 Leray—schauder非线性抉择 delay difference equations anti-periodic solutions Leray-schauder nonlinear ahernative
  • 相关文献

参考文献8

二级参考文献22

  • 1申建华.具有变系数的二阶中立型时滞差分方程[J].数学研究,1994,27(2):60-70. 被引量:37
  • 2Agarwal R P, Pang P Y H. On a generalized difference system[J]. Nonlinear Anal, 1997, 30: 365-376.
  • 3Katsunori I. Asymptotic analysis for linear difference equations,Trans[J]. Amer Math Soc, 1997, 349: 4107-4142.
  • 4Zhang Z Y. An algebraic principle for the stability of difference operators[J]. J Diff Eqns, 1997,136: 236-247.
  • 5Zhang R Y, Wang Z C, Chen Y, et al. Periodic solutions of a single species discrete population model with periodic harvest/stock, Comput[J]. Math Appl, 2000, 39: 77-90.
  • 6Shen H J,Stavroulakis I P.Oscillation criteria for delay difference equation[J]. Electr-on J diffeqns,2001 (10): 1 - 15.
  • 7Yu J S,Zhang B G,Qian X Z.Oscillation of delay difference equations with oscillating coefficients[J].J Math.Anal.Appl.,1993 (177):432-444.
  • 8Lalli B S,Zhang B G,Li J Z.On the Oscillation of Solutions and Existence of Positive Solutions of Neutral Difference Equations [ J ]. J. Math. Anal. Appl., 1991,158: 213-233.
  • 9Lalli B S,Zhang B G.On Existence of Positive Solutions and Bounded Oscillation for Neutral Difference Equations [J].J.Math.Anal.Appl.,1992,166:272-287.
  • 10Agarwal R P and Pang P Y H. On a generalized difference system. Nonlinear Anal., 1997, 30:365-376.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部