期刊文献+

一类带有治疗项的SEIR传染病动力学模型

A Kind of SEIR Epidemic Dynamics Model with Treatment
下载PDF
导出
摘要 研究了一类带有治疗项的SEIR动力学模型,其中考虑的治疗率与感染者数量有一定的比例关系。得出了决定疾病灭绝和持续生存的基本再生数R0,给出了不同条件下各类平衡点存在的条件阈值,进而判断出了平衡点的稳定性。 In this paper, a kind of SEIR epidemic dynamics model with treatment is studied, among them, the treatment considered has certain proportional relations with the number of infections. The basic reproductive number R0 of deciding disease extinction and persistent existence is obtained, the condition threshold of all kinds of equilibrium points existed is given, and the stability of the equilibrium points is judged.
出处 《重庆理工大学学报(自然科学)》 CAS 2012年第10期97-102,共6页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(10911075)
关键词 治疗项 平衡点 稳定性 treatment equilibrium stability
  • 相关文献

参考文献8

  • 1Guangzhi Zeng, Lansun Chen, Lihua Sun. Complexity of an SIR epidemic dynamics model with impulsive vaccination control [ J]. Chaos ,Solitons and Fractals ,2005,26:495 - 505.
  • 2Shigui Ruan, Wendi Wang. Dynamical behavior of an epidemic model with a nonlinear incidence rate [ J ]. J Differential Equa- tions,2003,188(2) :135 - 163.
  • 3张丽娟,王福昌,靳志同,张艳芳,赵永安.一类带移民输入的传染病动力学行为分析[J].安徽农业科学,2012,40(2):1243-1245. 被引量:1
  • 4Wendi Wang, Shigui Ruan. Bifurcations in an epidemic model with constant removal rate of the infectives [ J ]. Math Anal Appl, 2004,291 (2) :775 -793.
  • 5Linhua Zhou, Meng Fan. Dynamics of an SIR epidemic model with limited medical resources revisited [ J ]. Nonlinear Analysis, 2012,13(2) : 312 -324.
  • 6John C E, Walter L E. Dynamics of an epidemic model with quadratic treatment [ J ]. Nonlinear Analysis, 2011,12 (2) :320 - 332.
  • 7XueZhi Li, WenSheng Li, Mini Ghosh. Stability and bifurcation of an SIS epidemic model with treatment [ J ]. Chaos, Solitons and Fractals, 2009,42 ( 2 ) :2822 - 2832.
  • 8路征一,王稳地.生物数学前沿[M].北京:科学出版社,2008.

二级参考文献11

  • 1THIEME H R,CASTILLO-CHAVEZ C.On the role of variable infectivityin the dynamics of the human immun-odeficiency virus epidemic[C] //CASTILLO CHAVEZ C.Mathematical and Statistical Approaches to AID-SEpidemiology(Lect Notes Biomath Vol.83).Berlin,Heidelberg,NewYork:Springer,1989:157-177.
  • 2ANDERSON R M.Transmission dynamics and control of infectious diseases[C] //ANDERSON R M,MAY M R.Population Biology of Infectious Dis-eases,Life Sciences Research Report 25,Dahlem Conference.Berlin:Springer,1982:149-176.
  • 3DIETZ K.Overall population patterns in the transmission cycle of infectiousdisease agents[C] //ANDERSON R M,MAY R M.Population Biology ofInfectious Diseases.Belin,Heidelberg,New York:Springer,1982.
  • 4HEESTERBEEK J A P,METZ J A J.The saturating contact rate in mar-riage and epidemic models[J].J Math Biol,1993,31:529-539.
  • 5BRAUER F,Van den DRIESSCHE P.Models for transmission of diseasewith immigration of infectives[J].Math Biosci,2001,171:143-154.
  • 6PUGLIESE A.An SEI epidemic model with varying population Size[C] //BUSENBERG S,MARTELLI M.Differential Equation Models in Biology,Epidemiology and Ecology.Lecture Notes in Biomathematics 92.Belin,Hei-delberg,New York:Springer,1991:121-138.
  • 7THIEME H R.Persistence under relaxed point-dissipativity(with Appli-cation to an Endemic Model)[J].SIAM J Math Anal,1993,24:407-435.
  • 8ZHOU J,HETHCOTE H W.Population size dependent incidence in modelsfor diseases without immunity[J].J Math Biol,1994,32:809-834.
  • 9HALE J K.Ordinary Differential Equations[M].New York:Wiley-Inter-science,1969.
  • 10LI M Y,MULDOWENEY J S.A geometric approach to global stabilityproblems[J].SIAM J Math Anal,1996,27(4):1070-1083.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部