摘要
以3Cr13不锈钢为基体,在由PbO45g/L和NaOH160g/L组成的镀液中加入20g/LCeO2(平均粒径30nm)或/和20g/LB4C(平均粒径6μm),采用阳极电沉积的方法制备了α-PbO2–B4C、α-PbO2–CeO2、α-PbO2–CeO2–B4C等3种复合惰性阳极材料,观察了其表面微观组织特征,测试了其电沉积时的阳极极化曲线以及在ZnSO4–H2SO4溶液中的循环伏安曲线和塔菲尔曲线,并与纯α-PbO2电极进行了对比。结果表明,CeO2、B4C或其两者与α-PbO2的共沉积改变了阳极沉积电位和α-PbO2的电结晶形貌,使晶粒尺寸减小,并导致α-PbO2在ZnSO4–H2SO4溶液中的阴极还原峰电位正移,及有助于提高α-PbO2的耐蚀性。α-PbO2–CeO2和α-PbO2–CeO2–B4C复合惰性阳极材料分别在低电位区和高电位区具有良好的析氧电催化活性。
α-PbO2-B4C, α-PbO2-CeO2, and α-PbO2--CeO2- B4C inert anodes were prepared on 3Cr13 stainless steel substrate by anodic electrodeposition from a PbO 45 g/L + NaOH 160 g/L bath with 20 g/L CeO2 (average particle size 30 nm) and/or 20 g/L B4C (average particle size 6 gm). The surface microstructures, anodic polarization curves during electrodeposition, as well as cyclic voltammograms and Tafel polarization curves in ZnSO4-H2SO4 solution of the three anodes were studied and compared with those of purec α-PbO2 anode. The results showed that the codeposition of either or both CeO2 and B4C particles with α-PbO2 changes the anodicdeposition potential and electrocrystallization morphology of α-PbO2, which is characterized by the decrease of grain size, leads to a positive shift of cathodic reduction peak potential of α-PbO2 in ZnSO4-H2SO4 solution, and improves the corrosion resistance of α-PbO2, α-PbO2-CeO2 and ct-PbO2- CeO2-B4C composite inert anodes show good electrocatalytic activity for oxygen evolution in low and high potential regions, respectively.
出处
《电镀与涂饰》
CAS
CSCD
北大核心
2012年第11期1-4,共4页
Electroplating & Finishing
基金
国家自然科学基金(51004056)
云南省应用基础研究计划2010ZC052)
中国科学院无机涂层重点实验室开放基金(KKZ6201152009)
关键词
不锈钢
二氧化铅
氧化铈
碳化硼
FEl极
复合
电沉积
锌电积
析氧
stainless steel
lead(IV) oxide
ceria
boron carbide
anode
composite electrodeposition
zinc electrowinning
oxygen evolution