期刊文献+

基于局部保持投影的复合位置投影

Multiple information projection based on locality preserving projections
下载PDF
导出
摘要 为解决在人脸识别领域的特征提取问题,提出一种基于局部保持投影(LPP)的复合位置投影(MLPP)方法,通过选取不同的类内、类间度量矩阵和约束矩阵,将求解最优变换矩阵的问题转换成普通的特征值问题。在构造邻接图时,该算法将相同类各点作为邻接点,将类内结构保持到特征空间中,在保留局部结构稳定的同时,使整体结构趋于最大化,从而形成高效的聚簇。在AT&T和JAFFE标准人脸图像库上的实验结果表明,MLPP算法具有较高的识别率。 With the purpose of solving feature extraction problem in face recognition area, a new manifold learning algorithm is proposed, called Multiple Locality Preserving Projections (MLPP) based on Locality Preserving Projec- tions (LPP). By selecting different measure matrix and constraints matrix those include intra-class matrix and inter-class matrix, the problem can be converted into the normal eigenvalue problem. When constructing the graph, this algorithm makes point with the same attributes as neighborhood points, which makes the intra-class construct save to feature space. As a result, the local construct remains stable, and at the same time the global construct tends to maximalism, so the cluster with high efficiency has been obtained. The results of the experiments on JAFFE and AT&T face database indicate that MLPP improves recognition rate.
出处 《计算机工程与应用》 CSCD 2012年第32期208-211,共4页 Computer Engineering and Applications
基金 黑龙江省教育厅科学技术研究项目(No.11551087)
关键词 人脸识别 特征提取 局部保持投影 子空间 复合位置保持 face recognition feature extraction Locality Preserving Projections(LPP) subspace multiple locality
  • 相关文献

参考文献9

  • 1Turk M,Pentland A.Eigenfaces for recognition[J].Cognitive Neuroscience,1991,3(1):71-86.
  • 2Turk M,Pentland A.Face recognition using eigenfaces[C]//Proc IEEE Conference on Computer Vision and Pattern Recognition,Maui,USA,1991:586-591.
  • 3郑宇杰,杨静宇,徐勇,於东军.一种基于Fisher鉴别极小准则的特征提取方法[J].计算机研究与发展,2006,43(7):1201-1206. 被引量:14
  • 4杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 5He X,Niyogi P.Locality preserving projections[C]//Proceedings of Advances in Neural Information Process-ing Systems.Cambridge,MA:MIT Press,2003.
  • 6He X F,Yan S C,Hu Y X,et al.Face recognition using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
  • 7林克正,王慧鑫,卜雪娜,林晟.基于局部保持投影的鉴别最大间距准则[J].模式识别与人工智能,2010,23(2):178-185. 被引量:17
  • 8Yu X,Wang X.Uncorrelated discriminant locality preserving projections[J].IEEE Signal Processing Letters,2010,15(8):361-364.
  • 9Jun L,Chen S C,Tan X Y,et al.Comments on“effi-cient and robust feature extraction by maximum margin criterion”[J].IEEE Transactions on Neural Networks,2009,18(6):1862-1864.

二级参考文献42

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2郑宇杰,杨静宇,徐勇,於东军.一种基于Fisher鉴别极小准则的特征提取方法[J].计算机研究与发展,2006,43(7):1201-1206. 被引量:14
  • 3[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 4[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 5[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 6[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 7[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 8[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 9[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 10[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部