摘要
针对球面散乱数据插值问题,结合三元多项式自然样条方法的基本原理,提出一种新的逼近球面上散乱数据的自然样条插值方法,利用新的方法对给定区域内的三元函数进行数值逼近实验。将数值实验误差与理论误差对比(5%),结果验证了这种方法在球面散乱数据逼近问题上能够有效的使最大误差控制在2%以内。研究结果表明,这是一种比较有效的球面散乱数据逼近方法。
For the spherical surface scattered data interpolation problems, the author constructs a new natural spline interpolation method to approximate the scattered data of the sphere, combing with the natural spline of ternary poly- nomial method. The new method is used to approximate two kinds of function with three variables. Comparing the numerical experiment error and theoretical error(5% ), the results show that the proposed method of approximating the scattered data of sphere could make the experiment error(2 % ) be far less than the theoretical error. It is a very effective spherical scattered data approximation method.
出处
《成都信息工程学院学报》
2012年第5期520-524,共5页
Journal of Chengdu University of Information Technology
关键词
计算数学
数值逼近
球面散乱数据
自然样条
插值
computational mathematics
numerical approximation
spherical scattered data
natural spline
interpola-tion