期刊文献+

基于散乱数据的球面自然样条插值法

Natural Spline Interpolation Method of Sphere Based on the Scattered Data
下载PDF
导出
摘要 针对球面散乱数据插值问题,结合三元多项式自然样条方法的基本原理,提出一种新的逼近球面上散乱数据的自然样条插值方法,利用新的方法对给定区域内的三元函数进行数值逼近实验。将数值实验误差与理论误差对比(5%),结果验证了这种方法在球面散乱数据逼近问题上能够有效的使最大误差控制在2%以内。研究结果表明,这是一种比较有效的球面散乱数据逼近方法。 For the spherical surface scattered data interpolation problems, the author constructs a new natural spline interpolation method to approximate the scattered data of the sphere, combing with the natural spline of ternary poly- nomial method. The new method is used to approximate two kinds of function with three variables. Comparing the numerical experiment error and theoretical error(5% ), the results show that the proposed method of approximating the scattered data of sphere could make the experiment error(2 % ) be far less than the theoretical error. It is a very effective spherical scattered data approximation method.
出处 《成都信息工程学院学报》 2012年第5期520-524,共5页 Journal of Chengdu University of Information Technology
关键词 计算数学 数值逼近 球面散乱数据 自然样条 插值 computational mathematics numerical approximation spherical scattered data natural spline interpola-tion
  • 相关文献

参考文献11

  • 1王仁宏.多元样条及其应用【M】.北京:科学出版社,1992.
  • 2Guan L T, Liu B. Surface Design by Natural Splines over Refined Grid Points [J]. Journal of Computational and Applied Mathematics, 2004,163 (1) :107- 115.
  • 3关履泰,覃廉,张健.用参数样条插值挖补方法进行大规模散乱数据曲面造型[J].计算机辅助设计与图形学学报,2006,18(3):372-377. 被引量:13
  • 4Zhou T H, Han D F, Lai M J. Energy Minimization Method for Scattered Data Hermit Interpolation[J ]. Ap- plied Numerical Mathematics, 2008,58 : 646 - 659.
  • 5李岳生 关履泰.散乱数据的二元多项式自然样条插值.计算数学,1990,:135-146.
  • 6Chui C K, Guan L T. Multivariate polynomial natural spline for interpolation of scattered data and other appli- cations[J], in: Workship on Computational Geometry, eds. A. Conte et al. World Scientific 1993:77- 98.
  • 7Guan L T. A local basis for bivariate polynomial natural splines of scattered data[J ]. Guangzhou International Symposium of Computational Mathematics, 1997.
  • 8Guan L.T. Bivariate Polynomial Natural Spline Interpolation Algorithms with Local Basis for Scattered Data [J]. J. Comp. Anal. And Appl.2003,(1):77-101.
  • 9Laurent P J. Approximation et optimization[M]. Paris: Hermann, 1972.
  • 10徐应祥,关履泰,许伟志.三奇次散乱点多项式自然样条插值[J].计算数学,2011,33(1):37-47. 被引量:4

二级参考文献27

  • 1陈志杨,张三元,叶修梓.点云数据中空洞区域的自动补测算法[J].计算机辅助设计与图形学学报,2005,17(8):1793-1797. 被引量:12
  • 2杜佶,张丽艳,王宏涛,刘胜兰.基于径向基函数的三角网格曲面孔洞修补算法[J].计算机辅助设计与图形学学报,2005,17(9):1976-1982. 被引量:42
  • 3关履泰,覃廉,张健.用参数样条插值挖补方法进行大规模散乱数据曲面造型[J].计算机辅助设计与图形学学报,2006,18(3):372-377. 被引量:13
  • 4AndrewRwebb著.王萍,杨培龙,罗颖昕译.统计模式识别(第二版)【M】.北京:电子工业出版社,2004.
  • 5TonyFChen,JianhongShen.图像处理与分析:变分,PDE,小波及随机方法(影印版)[M].北京:科学出版社,2009.
  • 6Kazhdan M, Bolitho M, Hoppe H. Posson surface reconstruction[J], in: Proceeding of Eurogrouph- ics Synposium on Geometry Processing. Cagliari, Italy, 2006: 61-70.
  • 7王仁宏.多元样条及其应用【M】.北京:科学出版社,1992.
  • 8崔锦泰著,程正兴译.多元样条理论用其应用[M].西安交通大学出版社,1991.
  • 9Guan L T, Bin Liu. Surface design by natural Splines over refined grid points[J]. Jouneral of Computational and Applied Mathematics, 2004, 163(1): 107-115.
  • 10Lai M J, Schumaker L L. Spline functions over triangulations[M]. London: Cambridge University Press, 2007.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部