期刊文献+

超磁致伸缩微致动器车削系统的动力学分析 被引量:3

Dynamic Analysis of Giant Magnetostrictive Micro-actuator Used in Turning System
下载PDF
导出
摘要 考虑温度及预应力的影响,建立了应用于车削加工系统的超磁致伸缩微致动器动力学模型,并讨论了温度及预应力对其振动响应的影响.预应力对磁滞及理想磁化模型的超磁致伸缩微致动器模型输出位移的影响变化趋势相同,都出现"翻转"现象,在激励磁场小幅值范围内,系统的输出位移随着预应力的增加而减小,随着激励幅值的增加而增加;当激励磁场幅值较小时,温度对输出位移的影响较小,但是当激励磁场幅值较大时,输出位移随着温度的升高而明显减小.该结果对如何处理预应力、温度、超磁致伸缩材料的滞回的影响提供了理论依据. The dynamics model of giant magnetostrictive actuator (GMA) used in turning system was established and the influence of temperature and pre-stress on output was discussed. The displacements of ideal or hysteresis GMA model appear "roll over" phenomenon under pre-stress. In small incentive magnetic field, the output displacement decreases with increasing the pre- stress, but when incentive is big enough, the trend is opposite. Temperature affects little on the output displacement in small incentive magnetic field, while the output displacement is obvious decrease with the rise of temperature in a bigger incentive magnetic. The results provide theoretical basis for how to deal with the influences of pre-stress, temperature, GMM hysteresis.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第11期1616-1619,共4页 Journal of Northeastern University(Natural Science)
基金 高等学校博士学科点专项科研基金资助项目(20090042110003)
关键词 滞回模型 超磁致伸缩微致动器 车削系统 动力学模型 振动响应 hysteresis model giant magnetostrictive micro-actuator (GMA) turning system dynamics model vibration response
  • 相关文献

参考文献8

  • 1Clark A E. Magnetostrictive rare earth Fe2 compounds. ferromagnetic materials [ J ]. Norih Holl and Anlsterdam, 1980,1:531 589.
  • 2Zheng X J, Sun L. A one-dimension coupled hysteresis model for giant magnetostrietive materials [ J ]. Journal of Magnetism and Magnetic MateriaLs, 2007,309:263 271.
  • 3曹淑瑛,王博文,闫荣格,黄文美,翁玲.超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003,23(11):145-149. 被引量:60
  • 4袁惠群,孙华刚,李东,李岩.超磁致伸缩换能器的磁滞非线性动力学仿真[J].力学与实践,2009,31(3):35-38. 被引量:2
  • 5Yuan H Q, Sun H G, Li I), et al. Analysis of hysteretic property of giant magnetostrietive actuator [ J ]. Journal of Rare Earths, 2007,25(4) :236 239.
  • 6Cao S Y, Wang B W, Zheng J J, et aZ. Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network[J]. IEEE Transactions on Magnetics, 2006,42(4) :1143 - 1146.
  • 7Zhang T L, Jiang C B, Liu X, et a!. Dynamic magnetostrain properties of giant magnetostrictive alloy actuators for damping [J]. Smart Materials and Structures, 2005,14(4) :38 - 41.
  • 8Zhang T L, Zhang H B, Jiang C B. Hysteresis analysis and reduction of giant magnetostrictive materials and their actuators[J]. International Society for Optics and Photonics , 2007 (12) : 6423 - 6428.

二级参考文献8

  • 1贾振元,王福吉,张菊,郭丽莎.超磁致伸缩执行器磁滞非线性建模与控制[J].机械工程学报,2005,41(7):131-135. 被引量:24
  • 2徐宏海,吴晚云,张超英.车削加工过程建模与MATLAB仿真分析[J].机床与液压,2006,34(6):229-230. 被引量:4
  • 3Carman G P, Mitrovic M. Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems[J]. J Intelli Mat Syst & Stru, 1995, (6): 673-684.
  • 4Restofff J B, Savage H T, Clark A E, et al. Preisach modeling of hysteresis inTerfernol-D[J]. J Appl Phys, 1990, 67(9): 5016-8.
  • 5Faidley L E, Lund B J, Flatau A B, et al. Tefernol-D elasto- magnetic properties under varied operating conditions using hysteresis loop analysis[C]. SPIE Symposium on Smart Structures, 1998.
  • 6Calkins F T, Smith R C, Flatau A B. Energy-based hysteresis model for magnetostrictive transducers[J]. IEEE Trans Magn, 2000, 36(2): 429-439.
  • 7Clark A E. Magnetostrictive rare earth-Fe2 compounds[M]. In; Wohlfarth E P, ed.Ferromagnetic material, North-Holland Amsterdam, 1980.
  • 8吴博达,鄂世举,杨志刚,程光明.压电驱动与控制技术的发展与应用[J].机械工程学报,2003,39(10):79-85. 被引量:50

共引文献60

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部