期刊文献+

基于感知视觉重要性的立体图像质量评价 被引量:2

Quality assessment of stereoscopic images based on the significance of perceptual vision
下载PDF
导出
摘要 视觉心理、生理因素是有效、准确评价图像质量的重要依据.尽管在计算层面已有众多视觉心理、生理计算模型及方法为其提供支持,但在图像质量评价任务中如何分析各种孤立方法之间的内在关系进而使之有效协同,是使得评价结果更符合人主观评测的关键.从图像质量评价的角度出发,功能上将人眼的视觉注意区域定义并数学形式化为视觉初期注意区域与视觉转移期的劣质区域;同时考虑人眼的感知冗余特性,结合JND感知冗余模型,进而提出了图像质量评价范畴下的视觉感知模型PVSSIM.以此为依据,将感知视觉的方法在二维图像数据库中验证其可行性,并将其引入到立体图像质量评价中.实验结果表明,提出的客观评价方法与传统方法相比,充分考虑到了图像质量评价任务中各种视觉心理、生理因素的协同,与人主观的图像质量评价相比具有更高的相关度,评价方法在立体图像库中能很好地与主观评价相吻合,达到了预期的效果. The visual psychological and physiological factors are crucial for the assessment on image quality. There are many visual, psychological and physiological calculation models used to support the assessment of image quality, however, how to analyze the intrinsic relations among various isolated methods and further effectively coordinate them in the task of image quality assessment is the key to making the assessment results more conform to subjective assess ment of human. The definition and formalization of visual attention areas as saliency in the early vision period and poor-quality area for vision transformation periods were examined from an image quality angle. Simultaneously, the property of perceptual redundancy of human eyes, JND(just noticeable distortion) perception redundancy model, and vision perception model PVSSIM of image equality assessment will be examined. Based on the research findings, fea sibility of vision perception methods are verified using a two-dimensional image database study through the introduc tion of image stereoscopic. The experimental results confirm that, in comparison with traditional methods, the raised objective assessment method sufficiently considers the coordination of various psychological and physiological factors in the task of image quality assessment, it is more relevant to the subjective image quality assessment of human. In the stereoscopic image database, the assessment method may properly coincide with the subjective assessment, the expectable effect is realized.
出处 《智能系统学报》 北大核心 2012年第5期414-422,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61100096) 国家"973"计划资助项目(2009CB320905)
关键词 图像质量评价 立体图像评价 JND 视觉心理 生理模型 感知视觉 image quality assessment stereoscopic image just noticeable distortion(JND) visual psychology physiologicalmodel perceptual vision
  • 相关文献

参考文献17

  • 1XING Liyuan, YOU Junyong, EBRAHIMI T, et al. A perceptual quality metric for stereoscopic crosstalk perception[C]//17th IEEE International Conference on Image Processing. Hong Kong, China, 2010: 4033-4036.
  • 2KIM D H, MIN D B, OH J H, et al. Depth map quality metric for threedimensional video[C]//Proceedings of the SPIE Volume 7237: Stereoscopic Displays and Applications ⅩⅩ. San Jose, USA, 2009: 29-34.
  • 3ROUSHAIN A, SAZZAD P, HORITA Z M, et al. No reference stereoscopic image quality assessment[C]//Proceedings of the SPIE Volume 7524: Stereoscopic Displays and Applications ⅩⅪ. San Jose, USA, 2010: 17-21.
  • 4YOU Junyong, XING Liyuan, PERKIS A, et al. Perceptual quality assessment for stereoscopic images based on 2D image quality metrics and disparity analysis[C]//Fifth International Workshop on Video Processing and Quality Metrics for Consumer Electronics. Scottsdale, USA, 2010: 4033-4036.
  • 5CHOU Chunhsien, LI Yunchin. A perceptually tuned subband image coder based on the measure of justnoticeabledistortion profile[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1995, 5(6): 467-476.
  • 6TAKAHASHI K, NAEMURA T. Unstructured light field rendering using onthefiy focus measurements[C]//IEEE International Conference on Multimedia and Expo. Amsterdam, The Netherlands, 2005: 205-208.
  • 7HEWAGE C T E R, MARTINI M G. Reducedreference quality metric for 3D depth map transmission[C]//3DTVConference: The True Vision Capture, Transmission and Display of 3D Video. Tampere, Finland, 2010: 1-4.
  • 8王科俊,刘靖宇,马慧,李雪峰.手指静脉图像质量评价[J].智能系统学报,2011,6(4):324-327. 被引量:20
  • 9SAKAMOTO K, KIMURA R, TAKAKI M. Parallax polarizer barrier stereoscopic 3D display systems[C]//Proceedings of the 2005 International Conference on Active Media Technology. Kagawa, Japan, 2005: 469-474.
  • 10GUO An′an, ZHAO Debin, LIU Shaohui, et al. Visual attention based image quality assessment[C]//18th IEEE International Conference on Image Processing. Brussels, Belgium, 2011: 3297-3300.

二级参考文献28

  • 1姜太平,沈春林,谭皓.真三维立体显示技术[J].中国图象图形学报(A辑),2003,8(4):361-366. 被引量:50
  • 2梁发云,邓善熙,杨永跃.自由立体显示器的视觉特性测量与研究[J].仪器仪表学报,2006,27(10):1350-1353. 被引量:10
  • 3海洋.立体显示革命[J].中国科技财富,2007(7):62-68. 被引量:1
  • 4WANG Z, SHEIKH H R, BOVIK A C. Noreference perceptual quality assessment of JPEG compressed images[C]//Proceedings of IEEE International Conference on Image Processing. New York,USA: IEEE, 2002, 1: 477-480.
  • 5HONG L. Automatic personal identification using fingerprints[D]. Michigan State University, 1998.
  • 6DAUGMAN J. Statistical richness of visual phase information: update on recognizing persons by iris patterns[J]. International Journal Computer Vision, 2001, 45(1): 25-38.
  • 7ZHANG G, SALGANICOFF M. Method of measuring the focus of closeup images of eyes[P]. United States,5953440,1999.
  • 8LI Ma,TAN Tieniu, WANG Yunhong. Personal identification based on iris texture analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1519-1533.
  • 9Rudolf Maarten Bolle. System and methods for determing the quality of fingerprint images[P].United States patent number US596356(1999).
  • 10侯春萍,杨蕾,宋晓炜,戴居丰.立体电视技术综述[J].信号处理,2007,23(5):729-736. 被引量:13

共引文献34

同被引文献38

  • 1KONGWeiwei,LEI Yingjie,LEI Yang,et al.Image fusiontechnique based on NSCT and adaptive unit-fast-linking PC-NN[ J].IET Image Processing,2011,5(2):113-121.
  • 2DOM N,VETTERLI M.The finite ridgelet transform for im-age representation [ J].IEEE Transactions on Image Pro-cessing,2003,12(1):16-28.
  • 3CANDES E J,DONOHO D L.Curvelets:a surprisingly ef-fective non-adaptive representation for objects with edges[C]//[ S.l.]:Saint-Malo Proceedings,2002.
  • 4DO M N,VETTERLI M.The contourlet transform:an efficientdirectional multi-resolution image representation [ J].IEEETransactions on Image Processing,2002,11(1):16-28.
  • 5DO M N,VETTERLI M.Contourlets in:beyond wavelets[M].New York:Academic Press,2002;1-27.
  • 6CUNHAA L,ZHOU J P,DO M N.Nonsubsampled cont-ourlet transform:filter design and applications in denoising[C]//Proceedings of IEEE conference on Image Process-ing.Genova,Italy,2005:749-752.
  • 7ZHOU J P,CUNHA A L,DO M N.Nonsubsampled cont-ourlet transform:construction and application in enhance-ment[ C] //Proceedings of IEEE conference on Image Pro-cessing.Genova,Italy,2005:469-472.
  • 8CUNHA A L,ZHOU J P,DO M N.The nonsubsampledcontourlet transform:theory,design and applications[ J].IEEE Transactions on Image Processing,2006,15(10):3089-3101.
  • 9KONG Weiwei,LEI Yingjie,LEI Yang,et al.Fusiontechnique for gray-scale visible light and infrared imagesbased on NSCT and IHS transform [ J].IET Signal Pro-cessing,2011,5(1):75-80.
  • 10KUTYNIOK G,LAB ATE D.Construction of regular and ir-regular shearlets [ J].Joumal of Wavelet Theory and Appli-cations,2007,1:1-10.

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部