期刊文献+

基于粒子滤波和自适应模型的目标跟踪算法 被引量:2

An object tracking algorithm based on particle filter and adaptive model
下载PDF
导出
摘要 为了提高粒子滤波的性能,使用集合卡尔曼滤波对建议分布进行改进,同时提出了用于视频跟踪的自适应融合模型.使用集合卡尔曼滤波结合当前的观测信息构造建议分布,结合当前观测信息对每一个粒子进行集合分析,得到新的建议分布,依据新的建议分布对粒子进行采样,同时在跟踪过程中将颜色特征模型和形状特征模型进行融合,并进行自适应更新.实验结果证明:相对于传统粒子滤波和扩展卡尔曼粒子滤波,使用新的建议分布可以更有效地降低均方根误差,同时自适应融合模型的稳定性要高于使用单一颜色模型.使用新的建议分布和融合模型,可以有效提高粒子滤波的准确性和稳定性。 To improve the performance of particle filter,ensemble Kalman filter is proposed to construct proposal distribution.And an adaptive fusion model is applied for object tracking.Using ensemble Kalman analysis to build the posterior probability distribution by integrating latest observation information.New particles are resampled from the new proposal distribution.In the tracking process,color model and shape model are fused and updated adaptively.Experimental results show the new proposal distribution can reduce the root mean square error more effectively than traditional particle filter and extended Kalman particle filter.The adaptive fusion model is more stable than single color model.The new proposal and adaptive fusion model can enhance the estimation accuracy and improve the stability of the object tracking.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第10期139-143,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60802084)
关键词 目标跟踪 粒子滤波 集合卡尔曼滤波 建议分布 自适应融合模型 object tracking particle filter ensemble Kalman filter proposal distribution adaptive fusion model
  • 相关文献

参考文献14

  • 1BANERJEE A, BURLINA P. Efficient particle filtering via sparse kernel density estimation[J]. IEEE Transactions on Image Processing, 2010, 19(9) : 2480 -2490.
  • 2YAN Zhai. Improved nonlinear filtering for target tracking [ D ]. Norman Oklahoma: University of Oklahoma Graduate College, 2007 : 5 - 14.
  • 3GUNNARSSON F, BERGMAN N. Particle filter for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2) : 425 -437.
  • 4DE FREITAS F G. Bayesian methods for London neural networks [D]. Cambridge : Cambridge University, 1999.
  • 5LEEUWEN P J, EVENSEN G. Analysis scheme in the ensemble Kalman filter [ J]. Mon Wea Rev, 1998, 126 (6) : 1719 - 1724.
  • 6EVENSEN G. The ensemble Kalman filter: theoretical formulation and practical implementation [ J ]. Ocean Dynamics, 2003, 53: 343- 367.
  • 7LAINIOTIS D, PAPAPARASKEVA P. A new class of efficient adaptive nonlinear filters (ANLF) [ J ]. IEEE Transactions on Signal Processing, 1998, 46 (6) : 1730 - 1737.
  • 8LAINIOTIS D, PAPAPARASKEVA P. Efficient algorithms of clustering adaptive nonlinear filters [ J ]. IEEE Transactions on Automatic Control, 1999,44 (7) : 1454 - 1459.
  • 9PEREZ P, VERMAAK J, BLAKE A. Data fusion for visual tracking with particles [ J ]. Proceedings of the IEEE,2004, 92(3) :495 -513.
  • 10COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift [ C ]// IEEE Conference on Computer Vision and Pattern Recognition. South Carolina: [EEE Computer Society Tech- nical Committee on Pattern Analysis and Machine Intelligence, 2000, 2- 142- 149.

同被引文献27

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:22
  • 2胡波,陈恳,徐建瑜,张云.基于Kalman预测和Mean-shift算法的视频目标跟踪[J].光电子.激光,2009,20(11):1517-1522. 被引量:22
  • 3AIDALA V J, HAMMEL S. Utilization of polar coordinates for bearing- only tracking[J]. IEEE Transaction on Automatic Control, 1983, 28(2): 283-294.
  • 4SHALOM Y, KIRUBARAJAN T. Estimation with application to tracking and navigation[M]. New York: John Wiley & Sons, inc, 2001.
  • 5MURPHY D J. Noise beatings-only target motion analysis[D]. Dissertation of Northwestern University, 1970.
  • 6BAR-ITZHACK T Y, MEDAN Y. Efficient square root algorithm for measurement update in kalman filtering[J]. Journal of Guidance and Control, 1983, 6(3): 129-134.
  • 7NORGAARD M, POULSEN N, RAVN O. New developments in state estimation for nonlinear systems [J]. Automatica, 2000, 36: 1627-1638.
  • 8DEOK-LIN L. Nonlinear bayesian filtering with application to estimation and navigation [D]. Texas A & M University, 2005.
  • 9AHMADI M, KHAYATIAN A, KARIMAGHAEE P. Attitude estimation by divided difference filter in quatemion space [J]. Acta Astronautica, 2012, 75: 95-107.
  • 10ALl Z, LANDOLSI M A, DERICHE M. Mulfiuser parameter estimation using divided difference falter in CDMA systems [J]. International Journal of Advanced Science and Technology, 2009, 5: 35-50.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部