期刊文献+

Urban building damage detection from VHR imagery by including temporal and spatial texture features 被引量:5

Urban building damage detection from VHR imagery by including temporal and spatial texture features
原文传递
导出
摘要 将两种基于地统计学的纹理特征加入到高分辨率遥感影像的城市建筑物倒塌探测中,考察了多尺度纹理对探测结果的影响。采用基于单类支持向量机的多时相直接分类方法提取建筑物倒塌信息。以伊朗巴姆地区2003年12月地震前后的Quickbird遥感影像为数据源,评价和验证了本文方法的有效性。研究表明,将多尺度的空间和时相纹理信息加入到高分辨率遥感影像的倒塌建筑物探测中,可以有效提高分类精度,该方法得到的结果可应用于灾害救援及评估。 The availability of very high resolution (VHR) satellite imagery has made analysis of remotely sensed data an in- creasingly effective tool for detection of post-earthquake urban building damage. While methods that use spectral information alone are often ineffective owing to spectral similarity between undamaged and damaged buildings, the detailed structure infor- mation discernable in VHR images makes it possible to add spatial and temporal features in the detection. This paper proposed a method to extract multi-temporal texture by the Pseudo Cross Variogram (PCV) and multiband texture by the Multivariate Vari- ogram (MV). The derived texture features were combined with spectral information for building damage detection in 2003 Barn earthquake using multi-temporal Quickbird images. The performance of the two texture features was evaluated at both optimal- scale level and multi-scale level. The results showed that incorporating multi-temporal and multiband textures could significantly increase detection accuracy, and that multi-scale textures performed better than uni-scale textures.
出处 《遥感学报》 EI CSCD 北大核心 2012年第6期1233-1245,共13页 NATIONAL REMOTE SENSING BULLETIN
基金 国家高技术研究发展计划(863计划)(编号:2008AA121806)~~
关键词 遥感技术 遥感方式 遥感图像 应用 urban building damage detection, multiband texture, multi-temporal texture, multi-scale, high resolution, geostatictexture
  • 相关文献

参考文献14

  • 1Adams B J, Huyck C K, Mansouri B, Eguchi R T and Shinozuka M. 2004. Application of high-resolution optical satellite imagery for post-earthquake damage assessment: the 2003 Boumerdes (Al- geria) and Bam (Iran) earthquakes. MCEER Research Progress and Accomplishments 2003-2004. Buffalo, NY: Multidisciplinary Center for Earthquake Engineering Research: 173-186.
  • 2Al-khudhairy D H A, Caravaggi I and Giada S. 2005. Structural dam-age assessments from Ikonos data using change detection, object- oriented segmentation and classification techniques. Photogram- metric Engineering and Remote Sensing, 71 (7): 825-837.
  • 3Bourganlt G and Marcotte D. 1991. Multivariate variogram and its ap- plication to the linear model of eoregionalization, Mathematical Geology, 23(7): 899-928.
  • 4Chica-olmo M and Abarca-hem.ndez F. 2000. Computing geostatistical image texture for remotely sensed data classification. Computers and Geosciences, 26(4): 373-383.
  • 5Gong P, Marceau D J and Howarth P J. 1992. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sensing of Environment, 40(2): 137-151 [DOI: 10.1016/0034-4257(92)90011-8].
  • 6Jin H, Li P and Fan W. 2008. Land cover classification using multi- temporal CHRIS/PROBA images and multitemporal texture// IEEE International Geoscience and Remote Sensing Sympo- sium (IGARSS 2008). Boston, MA: 742-745 [DOI: 10.1109/ IGARSS .2008.4779829].
  • 7Li P J, Xu H Q and Guo J C. 2010. Urban building damage detection from very high resolution imagery using OCSVM and spatial fea- tures. International Journal of Remote Sensing, 31(13): 3393-3409 [DOI: 10.1080/01431161003727705].
  • 8Marceau D J, Howarth P J, Dubois J M M and Gratton D J. 1990. Eval- uation of the grey-level co-occurrence matrix method for land- cover classification using SPOT imagery. IEEE Transactions onGeoscience and Remote Sensing, 28(4): 513-519 [DOI: 10.1109/ TGRS. 1990.572937].
  • 9Matsumoto K, Vu T T and Yamazaki F. 2006. Extraction of damaged buildings using highresolution satellite images in the 2006 central Java earthquake. Proceedings of 2006 Asian Conference on Re- mote Sensing (ACRS).
  • 10Pagot E and Pesaresi M. 2008. Systematic study of the urban postcon- flict change classification performance using spectral and structural features in a support vector machine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(2): 120-128 [DOI: 10.1109/JSTARS.2008.2001154].

同被引文献59

引证文献5

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部