期刊文献+

Synthesis of spinel LiMn_(2)O_(4) microspheres with durable high rate capability 被引量:2

耐久型高倍率性能锰酸锂微球的合成(英文)
下载PDF
导出
摘要 Spinel LiMn2O4 microspheres with durable high rate capability were synthesized by a facile route using spherical MnCO3 precursors as the self-supported templates, combined with the calcinations of LiNO3 at 700 °C for 8 h. The spherical MnCO3 precursors were obtained from the control of the crystallizing process of Mn2+ ions and NH4HCO3 in aqueous solution. The effects of the mole ratio of the raw materials, reaction time, and reaction temperature on the morphology and yield of the MnCO3 were investigated. The as-synthesized MnCO3 and LiMn2O4 microspheres were characterized by powder X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Galvanostatic charge/discharge tests indicate that the spinel LiMn2O4 microspheres deliver a discharge capacity of 90 mA-h/g at 10C rate show good capacity retention capability (75% of their initial capacity after 800 cycles at 10C rate). The durable high rate capability suggests that the as-synthesized LiMn2O4 microspheres are promising cathode materials for high power lithium ion batteries. 以Mn2+和NH4HCO3为原料,通过控制结晶法合成球形MnCO3前驱体模板。以LiNO3和MnCO3为原料,按照一定的摩尔比机械混合,在700°C下煅烧8h,合成高倍率性能和长循环性能的球形尖晶石LiMn2O4材料。分别考查原料的摩尔比、反应时间以及反应温度对前驱体MnCO3形貌和产率的影响。采用X射线粉末衍射和扫描电镜对合成的MnCO3和LiMn2O4进行表征,对LiMn2O4样品进行室温条件下的充放电性能测试。电化学测试结果表明:尖晶石锰酸锂微球在10C的放电倍率下的首次放电容量达90mA·h/g(1C放电容量为148mA/g),800次循环后容量保持率达到75%。该方法合成的LiMn2O4微球作为高功率型锂离子电池的正极材料有着较好的应用前景。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2541-2547,共7页 中国有色金属学报(英文版)
基金 Project(2011M501090) upported by the China Postdoctoral Science Foundation Project(SCUT2012ZZ0042) upported by the Fundamental Research Funds for the Central Universities Project supported by the"SPR-2011"of South China University of Technology Project(NRC07/08.EG01)supprted by the Fok Ying Tung Foundation
关键词 MnCO_(3)microspheres self-supported template LiMn_(2)O_(4) microspheres rate capability 碳酸锰微球 模板法 锰酸锂微球 高倍率性能
  • 相关文献

参考文献17

  • 1JEONG G J, KIM Y U, KIM Y J, SOHN H J. Prospective materials and applications for Li secondary batteries [J]. Energy Environmental Science, 20l 1,4(6): 1986-2002.
  • 2TARSCON J M, RECHAM N, ARMAND M, CHOTARD J N, BARPANDDA P, WALKER W, DUPONT L. Hunting for better Li-based electrode materials via low temperature [J]. Chemistry of Materials, 20t0, 22(3): 724-739.
  • 3CHENG F Y, WANG H B, ZHU Z Q, WANG Y Y, ZHANG T R, TAO Z L, CHEN J. Porous LiMnzO4 nanorods with durable high-rate capability for rechargeable Li-ion batteries [J]. Energy Environmental Science, 2011, 4(9): 3668-3675.
  • 4ELLIS B L, LEE K T, NAZARL F. Positive electrode materials for Li-ion and Li-batteries [J]. Chemistry of Materials, 2010, 22(3): 691-714.
  • 5GAO X P, YANG H X. Multi-electron reaction materials for high energy density batteries [J]. Energy Environmental Science, 2010, 3(2): 174-189.
  • 6COURTEL F M, DUNCAN H, ABU-LEBDEH Y, DAVIDSON 1 J. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn204 [J]. Journal of Materials Chemistry, 2011, 21(27): 10206-10218.
  • 7LIU W, KOWAL K, FARRINGTON G C. Mechanism of the electrochemical insertion of lithium into LiMn204 spinels [J]. Journal of the Electrochemical Society, 1998, 145(2): 459-465.
  • 8YANG X, TANG W, LIU Z, MAKITA Y, OOI K. Synthesis of lithium-rich LixMn204 spinels by lithiation and heat-treatment of defective spinels [J]. Journal of Materials Chemistry, 2002, 12(3): 489-495.
  • 9WANG Z Y, ZHOU L, LOU X W. Metal oxide hollow structures are promising electrode materials [J]. Advanced Materials, 2012, 24(14): 1903-1911.
  • 10OKUBOM, HOSONO E, KIM J, ENOMOTO M, KOJIMA N, KUDO T, ZHOU H S, HONMA 1. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J]. Journal of the American Chemical Society, 2007, 129 (23): 7444-7452.

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部