期刊文献+

Modeling of Ni_4Ti_3 precipitation during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys

双晶体NiTi形状记忆合金在无/有应力作用时效下的Ni_4Ti_3相沉淀行为模拟(英文)
下载PDF
导出
摘要 The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous. 运用相场方法研究双晶体NiTi形状记忆合金分别在无应力和有应力作用下时效过程中Ni4Ti3相的沉淀行为,模拟研究两种不同初始过饱和度(Ni含量分别为51.5%和52.5%,摩尔分数)的NiTi基体并考虑外加应力的影响。模拟结果表明,在无应力作用的体系中,当体系Ni原子初始浓度相对较低(51.5%Ni)时,Ni4Ti3相以非均匀的方式析出,其中晶界上存在大量的Ni4Ti3变体,晶界内大部分区域无变体;当体系Ni原子初始浓度较高(52.5%Ni)时,Ni4Ti3在整个双晶体系中均匀析出。在所研究的两种初始浓度下,一定大小的外加应力将直接导致Ni4Ti3变体在整个模拟体系中均匀析出,而两晶粒中变体的类型分布有所不同。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2578-2585,共8页 中国有色金属学报(英文版)
基金 Project (50871039) supported by the National Natural Science Foundation of China Project (2011ZB0007) supported by the Fundamental Research Funds for Central Universities of China Project (201104090881) support by China Postdoctoral Science Foundation
关键词 NiTi shape memory alloy Ni4Ti3 precipitate low-angle grain boundary martensitic transformation phase field simulation NiTi形状记忆合金 Ni4Ti3沉淀相 小角度晶界 马氏体相变 相场法
  • 相关文献

参考文献2

二级参考文献36

  • 1Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50:1029.
  • 2Wang Y, Banerjee D, Su C C, Khachaturyan A G. Acta Mater, 1998; 46:2983.
  • 3Shen C, Simmons J P, Wang Y. Acta Mater, 2007; 55: 1457.
  • 4Bosze W P, Trivedi R. Metall Trans, 1974; 5:511.
  • 5Enomoto M, Aaronson H I. Scr Mater, 1989; 23:55.
  • 6Atkinson C. J Appl Phys 1982; 53:5689.
  • 7Otsuka K, Ren X. Prog Mater Sci, 2005; 50:511.
  • 8Li B Y, Rong L J, Li Y Y, Gjunter V E. Acta Mater, 2000; 48:3895.
  • 9Zhang Y P, Li D S, Zhang X P. Scr Mater, 2007; 57:1020.
  • 10Fan G, Chen W, Yang S, Zhu J, Ren X, Otsuka K. Acta Mater, 2004; 52:4351.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部