期刊文献+

改进的遗传混合蚁群算法在TSP问题中的应用 被引量:4

Application of improved genetic hybrid ant colony algorithm in TSP
下载PDF
导出
摘要 为了提高基本蚁群算法的收敛性能和全局求解能力,对基本蚁群算法进行了改进,提出了一种改进的遗传混合蚁群算法。在每代进化中保留最优解和次优解的公共解集后引入遗传操作中的交叉算子进行运算,并采用自适应改变信息素挥发系数的方法,加快了算法收敛速度,提高了解的全局性。通过对TSP问题的仿真运算表明,改进的遗传混合蚁群算法在收敛速度和解的全局性上都有较大的改善。 To improve the efficiency of convergence and the global ability of basic ACA,a novel hybrid algorithm is proposed,which is an improved combination of GA and ACA.Cross operator is calculated after reserving the intersection of the best solution and the second best solution in every evolution,and the adaptive change pheromone volatile coefficient is affected.Convergence speed is accelerated and the global ability of the algorithm is improved.The simulations for TSP problem show that the improved algorithm has better convergence efficiency and global ability.
作者 徐德明
出处 《计算机时代》 2012年第11期31-32,36,共3页 Computer Era
基金 惠州市科技计划基金资助项目(2010B020008020)
关键词 蚁群算法 遗传算法 交叉算子 自适应 TSP ant colony algorithm(ACA) genetic algorithm(GA) cross operator the adaptive change TSP
  • 相关文献

参考文献2

二级参考文献13

  • 1邵晓巍,邵长胜,赵长安.利用信息量留存的蚁群遗传算法[J].控制与决策,2004,19(10):1187-1189. 被引量:11
  • 2孙力娟,王良俊,王汝传.改进的蚁群算法及其在TSP中的应用研究[J].通信学报,2004,25(10):111-116. 被引量:38
  • 3陈宏建,陈崚,徐晓华,屠莉.改进的增强型蚁群算法[J].计算机工程,2005,31(2):176-178. 被引量:24
  • 4Barto A G, Sutton R S, Brower P S, Associative search network: A reinforcement learning associative memory[ J ]. Biological Cybem,1981,40(2): 201-211.
  • 5Coloni A, Dorigo M, Maniezzo V, Ant system: Optimization by a colony of cooperating agent[J].IEEE Trans on Systems,Man and Cybemetics-Part B:Cybemetcs.1996,26(1):29-41
  • 6Dorigo M,Gambardella L M. Ant colony system: A cooperative learning approach to the tavelling salesman Problem[J].IEEE Trans on Evolutionary Computation.1996,1(1):53-66
  • 7Li M, Wang H, Li P. Tasks mapping in multi-core based system: Hybrid ACO&GA approach[C]. Beijing, China: Proceedings of the 5th International Conference on ASIC,2003:355-340.
  • 8Pilat M L, White T. Using genetic algorithms to optimize ACS- TSP [C]. Brussels, Belgium: Proceedings of 3rd International Workshop on ant Algorithms/ANTS2002, LNCS,2002:282-287.
  • 9Acan A. GAACO: A GA+ACO hybrid for faster and better search capability[C]. Brussels, Belgium: Proceedings of the 3rd International Workshop on ant Algorithms/ANTS2002, Lecture Notes in Computer Science, 2002: 300-301.
  • 10Gong D X, Ruan X G. A hybrid approach of GA and ACO for TSP[C]. Hangzhou, China: Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004: 2068-2072.

共引文献179

同被引文献34

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部