期刊文献+

KdV-mKdV方程及其级数解 被引量:2

The KdV-mKdV equation and series solutions
下载PDF
导出
摘要 为研究KdV-mKdV方程的级数解,运用扩展的齐次平衡法,将KdV-mKdV方程约化成线性的偏微分方程,得到Bcklund变换以及KdV-mKdV方程的自变换解。通过Bcklund变换和该偏微分方程的多种级数解,获得丰富的精确解,包括多孤立波解、三角函数解和有理级数解。 The series solutions of the KdV-mKdV equation will be studied by using the extended homogenous balance method,we reduce the KdV-mKdV equation to a linear PDE and obtain Bcklund transformation of it.Furthermore,the self-transformation of solutions for the KdV-mKdV equation is obtained.By the Bcklund transformation and various series solutions of the PDE,abundant exact solutions of the KdV-mKdV equation are obtained including the multi-solitary wave solution,trigonometric function series solution,rational series solution and solution consisting of the three types of solutions.
出处 《桂林电子科技大学学报》 2012年第5期398-401,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11061010 11161013)
关键词 KDV-MKDV方程 齐次平衡法 Bcklund变换 级数解 KdV-mKdV equation homogenous balance method Bcklund transformation series solution
  • 相关文献

参考文献11

  • 1Wazwaz A M. New sets of solitary wave solutions to the KdV, mKdV and the generalized KdV equations [J]. Cornmun Nonlinear Sei Numer Simulat, 2008, 13 (12) : 331-339.
  • 2Tang S Q,Xiao Y X,Wang Z J. Traveling wave solutions for a class of nonlinear fourth order variant a generalized Camassa-Holm equation[J]. Appl Math Comput,2009, 210(1) :39-47.
  • 3Wazwaz A M. Multiple-front solutions for. the Burgers equation and the coupled Burgers equations[J]. Appl Math Comput, 2007,190 : 1198-1206.
  • 4Matveev V B, Salle M A. Daboux transformation and solitons[M]. Berlin: Springer-Verlag, 1991.
  • 5Gu C H, Hu H S,Zhou Z X. Daboux transformation and solitons theory and its geometric applications [M]. Shanghai:Shanghai Sci Tech Publ, 1999.
  • 6Fan E G. Multiple traveling wave solutions of nonlinear evolution equations using a unified algebraic method[J]. J Math Phys,2002,35(32) :6853-6873.
  • 7Fan E G. Uniformly constructing a series of explicit ex- act solutions to nonlinear equations in mathematical physics[J]. Chaos Soliton Fract, 2003,16 (5) : 819-839.
  • 8Kaya D,Inan I E. A numerical application of the decom- position method for the combined KdV-mKdV equation [J]. Appl Math Comput,2005,168(2) :915-926.
  • 9baid A. Exact solitary wave solutions for some nonlin- :ar evolution equations via Exp-function method[J]. hys Lett A,2007,365(3) :213-219.
  • 10Triki H, Taha T, Wazwaz A M. Solitary wave solutions for a generalized KdV-KdV equation with variable co- efficients[J]. Math Comput Simulat, 2010,8 (9) : 1867- 1873.

同被引文献21

  • 1YAN,Zhenya(闫振亚),ZHANG,Hongqing(张鸿庆).AUTO-DARBOUX TRANSFORMATION AND EXACT SOLUTIONS OF THE BRUSSELATOR REACTION DIFFUSION MODEL[J].Applied Mathematics and Mechanics(English Edition),2001,22(5):541-546. 被引量:3
  • 2闫振亚.组合KdV-mKdV方程的函数变换和精确解析解[J].烟台大学学报(自然科学与工程版),2001,14(2):95-99. 被引量:5
  • 3Adomian G. Solving frontier problem of physics : the decomposition method [ M ]. Boston : Kluwer Academic Publishers, 1994.
  • 4Rach R A. Convenient computational form for the Adomian polynomials [ J]. J Math Anal AppI, 1984,102:415-419.
  • 5Wazwaz A M. Construction of solita wave solutions and rational solutions for the KdV equation by Adomian decom- position method [ J ]. Chaos Soliton Fract,2001,12 :2283- 2293.
  • 6Wazwaz A M. A sine-cosine method for handlingnonlinear wave equations[ J ]. Mathematical and Computer Modelling, 2004,40:499-508.
  • 7Yan Z Y. New families of solitons with compact support for Boussinesq-like B(m, n) equations with fully nonlinear dispersion[ J]. Chaos Soliton Fract, 2002,12 : 1151-1158.
  • 8Kaya D, E1-Sayed S M. An application of the decomposition method for the two-dimensional KdV-Burgers equation [ J ]. Phys Lett A ,2003,320 : 192-199.
  • 9Zhu Y G, Lv Z S. New exact solitary-wave special solutions for the nonlinear dispersive K( m, n) equations [ J ]. Chaos Solitons and Fractals,2006,27:836-842.
  • 10Dogan K. An application of the modified decomposition method for two dimensional sine-Gordon equation [ J ]. Applied Mathematics and Computation,2004,159 : 1-9.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部