期刊文献+

基于云计算和改进离散粒子群的任务调度研究 被引量:7

Research on Task Scheduling Based on Cloud Computing and Improved Discrete Particle Swarm Algorism
下载PDF
导出
摘要 针对云计算处理节点的任务调度问题,提出了一种基于改进离散粒子群算法的云计算任务调度方法;首先,定义了云计算任务调度数学模型,在此基础上对离散粒子群算法进行改进,采用自然数编码来表示任务调度方案对应的粒子位置,提出了一种自适应的惯性权重因子调整方法,并给出了子种群和主种群进行协同寻优的粒子群任务调度算法;仿真实验表明:文中方法获得最优解的次数远大于其他方法,在迭代次数为22次时就获得全局最优解192.34,同时具有良好的收敛特性。 Aiming at the problem of task scheduling of processing node, a task scheduling method was introduced based on improved par- ticle swarm algorism. Firstly, the mathematical model of cloud computing was defined, and then the discrete particle algorism is improved, the natural number coding was used to represent the particle position, and a adaptive inertial weight factor was adjusted, finally, the algorism based on main population and the sub--population cooperation was given. The simulation result shows the counts of obtaining the best solu tion in our method is more than the other methods. When the iteration time is 22, the optimal solution is 192. 34 and have the good property such as convergence.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第11期3070-3072,共3页 Computer Measurement &Control
关键词 任务调度 粒子群 云计算 优化 task scheduling particle swarm cloud computing optimizing
  • 相关文献

参考文献9

二级参考文献21

  • 1唐丹,金海,张永坤.集群动态负载平衡系统的性能评价[J].计算机学报,2004,27(6):803-811. 被引量:28
  • 2张晓杰,孟庆春,曲卫芬.基于蚁群优化算法的服务网格的作业调度[J].计算机工程,2006,32(8):216-218. 被引量:17
  • 3米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128.
  • 4王天擎,谢军,曾洲.基于蚁群算法的网格资源调度策略研究[J].计算机工程与设计,2007,28(15):3611-3612. 被引量:8
  • 5FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10.
  • 6ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf.
  • 7BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28.
  • 8CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610.
  • 9KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf.
  • 10ABRAHAM A, BUYYA R, NATH B. Nature's heuristics for scheduling jobs on computational grids[ C]// The 8th International Conference on Advanced Computing and Communications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52.

共引文献306

同被引文献76

  • 1熊聪聪,冯龙,陈丽仙,苏静.云计算中基于遗传算法的任务调度算法研究[J].华中科技大学学报(自然科学版),2012,40(S1):1-4. 被引量:27
  • 2徐洪智,张彬连,覃遵跃.基于QoS的任务分类调度算法[J].计算机应用,2008,28(S2):35-37. 被引量:1
  • 3廖子贞,罗可,周飞红,傅平.一种自适应惯性权重的并行粒子群聚类算法[J].计算机工程与应用,2007,43(28):166-168. 被引量:13
  • 4Harrold M J.Testing:a roadmap[C]//Proceedings of the conference on the future of software engineering.ACM,2000:61-72.
  • 5Li Z,Harman M,Hierons R M.Search algorithms for regression test case prioritization[J].IEEE Transactions on Software Engineering,2007,33(4):225-237.
  • 6Yoo S,Harman M.Regression testing minimization,selection and prioritization:a survey[J].Software Testing,Verification and Reliability:2012,22(2):67-120.
  • 7Harman M,Jones B F.Search-based software engineering[J].Information and Software Technology,2001,43(14):833-839.
  • 8Zhu H,Wang Y,Wang K,et al.Particle Swarm Optimization(PSO) for the constrained portfolio optimization problem[J].Expert Systems with Applications,2011,38(8):10161-10169.
  • 9Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,1995.IEEE,1995,4:1942-1948.
  • 10Coello Coello C A,Lechnga M S.MOPSO:A proposal for multiple objective particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation,2002(CEC'02).IEEE,2002,2:1051-1056.

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部