期刊文献+

T91铁素体耐热钢相变行为和微观组织研究 被引量:3

Phase Transformation Behavior and Microstructure of T91 Ferritic Heat-resistant Steel
原文传递
导出
摘要 研究了T91铁素体耐热钢的相变行为与微观组织。结合热力学计算与差热分析法分析了相变行为;利用光学显微镜、扫描电镜和透射电镜观察了材料的显微组织;用X射线衍射仪检测了材料晶体结构。结果表明,经正火与回火处理的样品,其相变温度Ac1与磁性转变温度分别为856.2、749℃,其中计算的相变平衡转变温度Ae1为820℃,与实验测量的Ac1吻合很好;冷却过程中发生马氏体相变温度为400℃,根据热力学计算,其平衡析出相为MX、M23C6和Z相,MX相和M23C6型碳化物的最高溶解温度分别为1264、866℃。经正火、回火处理的样品基体组织为回火马氏体,析出相为MX、M23C6,由于短时回火与相对较低的Cr含量,所以未发现Z相。 The phase transformation behavior and microstructure of T91 ferritic heat-resistant steel were investigated. The phase transformation behavior was analyzed by combining the thermodynamic calculation with differential thermal analysis; the microstructure was observed by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. The results show that the transformation temperature A c1 and magnetic transition temperature is 856.2 ℃ and 749 ℃ for a normalized and tempered sample, respectively. Ac1 shows a reasonable agreement with phase equilibrium temperature Ac1 (820℃ ). In addition, the martensitic transformation occurs at 400 ℃ during cooling. The major equilibrium phases in T91 steel are MX, M23C6 and Z-phase. The solution temperature of MX and M23C6 is 1264 ℃ and 840 ℃, respectively. The microstructure observation indicates that the matrix is representative tempered martensite and the precipitates are MX and M23C6 after normalizing and tempering, whereas, no Z phase is found due to short-term tempering and relative low Cr content.
出处 《热加工工艺》 CSCD 北大核心 2012年第22期96-98,103,共4页 Hot Working Technology
关键词 相变 差热分析 微观组织 析出相 phase transformation differential thermal analysis microstmcture precipitates
  • 相关文献

参考文献10

  • 1Masuyama F. History of power plants and progress in heat resistant steels [J]. ISIJ International,2001,41(6) :612-625.
  • 2陈国宏,刘俊建,王家庆,汤文明.热处理对T91耐热钢的组织结构及力学性能的影响[J].热加工工艺,2010,39(14):131-134. 被引量:11
  • 3Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants [J]. Science and Technology of Advanced Materials,2008,9 (1):1-15.
  • 4Raju S, Ganesh B J, Banerjee A, et ol. Characterization of thermal stability and phase transformation energetics in tempered 9Cr-lMo steel using drop and differential scanning calorimetry [J]. Materials Science and Engineering,2007,A465(1-2):29-37.
  • 5Kocer C, Abe T, Soon A. The Z-phase in 9-12%Cr ferritic steels:a phase stability analysis [J]. Materials Science and Engineering, 2009, A505(1-2): 1-5.
  • 6Sawada K, Kushima H, Kimura K. Z-phase formation during creep and aging in 9-12% Cr heat resistant steels [J]. ISU International, 2006,46(5): 769-775.
  • 7Raju S, Ganesh B J, Rai A K, et al. Drop calorimetry studies on 9Cr-lW-0.23V-0.06Ta-0.09C reduced activation steel [J]. International Journal of Thermophysics,2010,31(2):399-415.
  • 8Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions [J]. Nature, 2003,424: 294-296.
  • 9Kocer C, Abe T, Soon A. The Z-phase in 9-12%Cr ferritic steels:a phase stability analysis [J]. Materials Science and Engineering, 2009,A505(1-2): 1-5.
  • 10Danielsen H K, Hald J. A thermodynamic model of the Z-phase Cr (V, Nb) N [J]. Calphad,2007,31(4):505-514.

二级参考文献7

共引文献10

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部